Sistemas Energéticos

3° ano 6° semestre Aula 13

Aula 13- Balanço Térmico de Geradores de Vapor Aquatubulares - Prática

Problema 13.1 (I)

Determine o consumo de combustível e o rendimento de um gerador de vapor que produz 10000 kg/h de vapor, a temperatura de 400°C e pressão de 20 bar, sabendo que a água de alimentação entra no gerador saturada a temperatura de 120°C. A temperatura do gás de escape é de 155°C, a temperatura exterior de 30°C a do combustível 30°C, A caldeira tem grelha de cadeia de percurso directo e funciona com carvão mineral com o calor específico de 1,4 kJ/kgK, o ar é insuflado a temperatura de 220°C com o coeficiente de excesso de ar mínimo para este tipo de câmara.

Problema 13.1 (II)

O combustível tem a seguinte composição dada em massa de combustível: Carbono 54%, Hidrogénio 12%, Nitrogénio 5%, Oxigénio 22%, Enxofre 7%, e é um combustível com bastante percentagem de cinzas, com Cinzas a 40%, Humidade de 7% e o coeficiente pirotécnico é de 0,9. A fracção das cinzas retirada com a escória é a máxima possível para este tipo de fornalha e a entalpia da escória de 4 kJ/kg.

14.4 Método do Balanço Inverso

O **Método do Balanço Inverso**, consiste em determinar o rendimento bruto da caldeira pela soma das perdas de energia; produz um resultado mais preciso que o balanço directo, uma vez que a soma das perdas de energia constituem aproximadamente 10% do Calor Disponível Q_{disp} e todos estes itens podem ser medidos de maneira fiável. Este é o único método disponível para estimar o rendimento térmico da caldeira nova, durante o estágio do projecto. As perdas q₃,q₄,q₅ e q₆ são estimadas, calcula-se então a perda q₂ e determina-se o rendimento por:

$$\eta_b = 100 \frac{Q_1}{Q_2} = 100 - (q_2 + q_3 + q_4 + q_5 + q_6)$$
(14.4)

Conhecido o rendimento pode-se determinar o consumo de combustível.

Características das Fornalhas de queima em camada (Tabela 12.1)

	Tipo de fornalha	Tipo de combustível	Coeficiente de excesso de ar	Perdas	de calor	Tensões térmicas admissíveis		Fracção de cinzas arrastadas
L			α_{f}	q ₃ %	q ₄ %	q _f (kW/m²)	q _v (kW/m³)	a _{arr}
	Com grelha fixa e alimentação manual	Lignite	1,6	2,0	6,0-8,0	800-930	230-400	0,20
		Carvão mineral	1,5-1,6	2,0	5,0-7,0	930-1050	230-400	0,15
		Antracite	1,6-1,7	1,0	8,0-10,0	1050	230-400	0,15
	Com grelha fixa e alimentador pneumático	Lignite	1,4-1,5	0,5-1,0	5,0-8,0	930-1200	230-350	0,12
		Carvão mineral	1,4-1,5	0,5-1,0	4,0-7,0	930-1200	230-350	0,10
)		Antracite	1,6-1,7	0,5-1,0	10,0-13,0	930-1200	230-350	0,10
	Com grelha de cadeia de percurso directo	Lignite	1,3-1,4	3,0	4,0-5,5	1600	300-450	0,1-0,2
		Carvão mineral	1,3 -1,4	1,5	3,0-6,0	1200	300-450	0,1-0,2
	Com grelha de cadeia de percurso inverso	Lignite	1,3-1,4	0,5-1,0	3,0-7,0	1400-1700	300-450	0,1-0,2
		Carvão mineral	1,3-1,4	0,5-1,0	3,0-8,0	1400-1700	300-450	0,08-0,2
	De cuba com cadeia	Turfa	1,3	1	2,0	1700-2200	300-400	

Problema 13.1 (Resolução I)

1.A massa de trabalho do combustível calcula-se de:

$$C^{t} = C^{d} \cdot \frac{100 - (W^{t} + A^{t})}{100} = 54 \cdot \frac{100 - (7 + 40)}{100} = 28,62\%$$

$$H^{t} = H^{d} \cdot \frac{100 - (W^{t} + A^{t})}{100} = 12 \cdot \frac{100 - (7 + 40)}{100} = 6,36\%$$

$$N^{t} = N^{d} \cdot \frac{100 - (W^{t} + A^{t})}{100} = 5 \cdot \frac{100 - (7 + 40)}{100} = 2,65\%$$

$$O^{t} = O^{d} \cdot \frac{100 - (W^{t} + A^{t})}{100} = 22 \cdot \frac{100 - (7 + 40)}{100} = 11,66\%$$

$$S^{t} = S^{d} \cdot \frac{100 - (W^{t} + A^{t})}{100} = 7 \cdot \frac{100 - (7 + 40)}{100} = 3,71\%$$

$$A^{t} = 40\%$$

$$W^{t} = 7,0\%$$

Problema 13.1 (Resolução II)

2. O volume teórico do ar é dado por:

$$V_{ar}^{o} = 0,0889 \cdot (C^{t} + 0,375 \cdot S^{t}) + 0,265 \cdot H^{t} - 0,0333 \cdot O^{t} = 3,965 \left| \frac{m^{3}}{kg} \right|$$

3. O volume teórico dos Gases Biatómicos calcula-se de:

$$V_{N_2}^{o} = 0,79 \cdot V_{ar}^{o} + 0,008 \cdot N^{t} = 3,154 \left[\frac{\text{m}^3}{\text{kg}} \right]$$

4. O volume teórico de água obtém-se de:

$$V_{H_20}^{\circ} = 0,1116 \cdot H^t + 0,0124 \cdot W^t + 0,0161 \cdot V_{ar}^{\circ} = 0,860 \left[\frac{m^3}{kg} \right]$$

5. Volume os Gases Triatómicos:

$$V_{R0_2} = 1,867 \cdot \left(C^t + 0,375 \cdot S^t\right) / 100 = 0,560 \left[\frac{\text{m}^3}{\text{kg}}\right]$$

Problema 13.1 (Resolução III)

6. O volume real dos Gases Biatómicos calcula-se de:

$$V_{R2} = V_{N_2}^{o} + (\alpha - 1) \cdot 0,79 \cdot V_{ar}^{o} = 4,093 \left[\frac{m^3}{kg} \right]$$

7. O volume real de água obtém-se de:

$$V_{H_20} = V_{H_20}^{o} + 0.0161 \cdot (\alpha - 1) \cdot V_{ar}^{o} = 0.880 \left[\frac{m^3}{kg} \right]$$

8. O volume dos Gases Triatómicos calcula-se de:

$$V_{R0_2} = 1,867. \left(C^t + 0,375.S^t\right) / 100 = 0,560 \left[\frac{\text{m}^3}{\text{kg}}\right]$$

9. O volume do Oxigénio Excedente obtém-se de:

$$V_{0_2} = 0.21 \cdot (\alpha - 1) \cdot V_{ar}^{o} = 0.250 \left[\frac{m^3}{kg} \right]$$

Problema 13.1 (Resolução IV)

10. O volume dos Gases de Combustão calcula-se de:

$$V_g = V_{R0_2} + V_{R2} + V_{H_20} + V_{0_2} = 5,783 \left| \frac{\text{m}^3}{\text{kg}} \right|$$

11. As fracções dos gases obtêm-se de:

$$r_{R0_2} = \frac{V_{R0_2}}{V_g} = 0,097 \quad \frac{m^3}{m^3}$$

$$r_{H_2O} = \frac{V_{RH_2O}}{V_g} = 0,152 \quad \frac{m^3}{m^3}$$

$$V_{PN} = \frac{3}{M}$$

$$r_{RO} = \frac{V_{RN_2}}{V_g} = 0,708 \quad m^3 / m^3$$

$$r_{O_2} = \frac{V_{O_2}}{V_{g}} = 0,043 \quad m^3 / m^3$$

12. O Poder Calorífico Inferior calcula-se de:

$$Q_{i}^{t} = 4,187 \left[81C^{t} + 300H^{t} - 26(O^{t} - S^{t}) - 6(W^{t} + 9H^{t}) \right] = 15215,893 \text{ [kJ/kg]}$$

$$Q_{disp} = Q_i + Q_{fis,ar} + Q_{fis,comb} = 15215,89 + 1480,85 + 42 = 16738,74$$
 [kJ/kg]

$$I_q = \frac{Q_i}{V_g} = \frac{15215,89}{5,783} = 2631,115 \text{ kJ/m}^3$$

Problema 13.1 (Resolução V)

13. O Calor disponível é dado por:

$$Q_{disp} = Q_i + Q_{fis,ar} + Q_{fis,comb} = 15215,89 + 1480,85 + 42 = 1$$

14. Entalpia da combustão

 $I_q = \frac{Q_i}{V_g} = \frac{15215,89}{5,783} = 2631,115 \text{ kJ/m}^3$

15. Entalpia do ar

 $I_{ar} = \frac{Q_{ar}}{V_g} = \frac{c_{p_{ar}} t_{ar} V_{ar} \alpha}{V_g} = \frac{1,306 \cdot 220 \cdot 3,965 \cdot 1,3}{5,783} = 256,09 \frac{\text{kJ}}{\text{m}^3}$

16. Entalpia do combustível

$$I_c = \frac{Q_c}{V_g} = \frac{c_{pcomb}t_{comb}}{V_g} = \frac{1,4\cdot30}{5,783_g} = 7,263 \frac{\text{kJ}}{\text{m}^3}$$

17. Entalpia dos gases de escape

$$I_g = I_q + I_a + I_c = 2894,11 \left| \frac{\text{kJ}}{\text{m}^3} \right|$$

Problema 13.1 (Resolução VI)

18. A entalpia dos gases também obtém-se de:

$$I_{g} = r_{RO_{2}}.(C\theta)_{RO_{2}} + r_{N_{2}}.(C\theta)_{N_{2}} + r_{H_{2}O}.(C\theta)_{H_{2}O} + r_{O_{2}}.(C\theta)_{O_{2}} = 2894,368 \left[\frac{\text{kJ}}{\text{m}^{3}}\right]$$

19. A temperatura teórica dos gases é 1129,61 °C

20. A temperatura real dos gases é:

$$t_a = \eta \cdot t_c$$

 $t_a = 0, 9 \cdot 1129, 61 = 1016, 65$ °C

21. As perdas com gases efluentes (q_2)

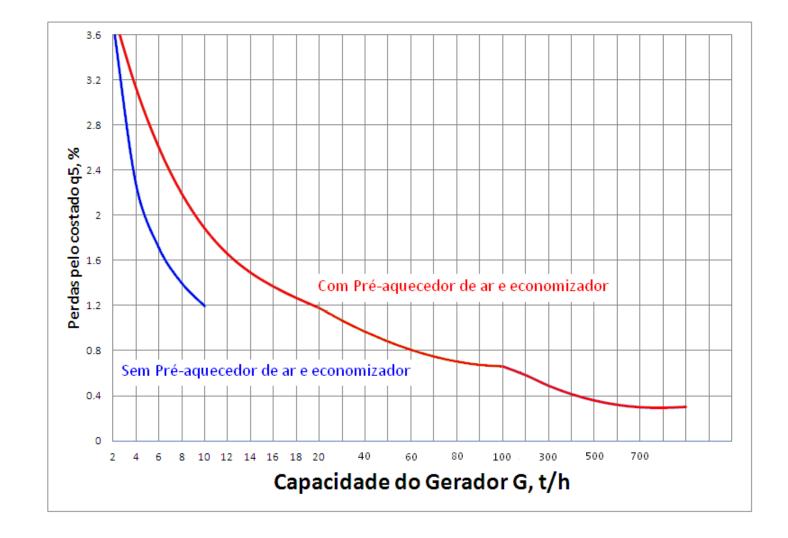
$$q_2 = \frac{V_g c_{pg} \left(T_{wg} - T_{amb} \right)}{Q_{disp}} \times 100 \left[\% \right]$$

Problema 13.1 (Resolução VII)

$$c_{pg} = r_{RO_2} \cdot (c_p \theta)_{RO_2} + r_{N_2} \cdot (c_p \theta)_{N_2} + r_{H_2O} \cdot (c_p \theta)_{H_2O} + r_{O_2} \cdot (c_p \theta)_{O_2}$$

$$c_{pg} = 0,097 \cdot 1,784 + 0,708 \cdot 1,291 + 0,152 \cdot 1,513 + 0,043 \cdot 1,445 = 1,379 \left[\frac{\text{kJ}}{\text{m}^{3 \circ} C} \right]$$

$$q_{2} = \frac{V_{g}c_{pg}\left(T_{wg} - T_{amb}\right)}{Q_{disp}} \times 100 = \frac{5,783 \cdot 1,379(155 - 30)}{16738,74} \times 100$$


$$= 5,955 \quad [\%]$$

22. As perdas q_3 e q_4 retiram-se da Tabela 25.1 e a q_5 do Gráfico 1

$$q_3 = 1.5$$
 $q_4 = 5$
 $q_5 = 1.85$

Gráfico das Perdas pelo Costado (q₅)

Problema 13.1 (Resolução VIII) Se: $A^r \ge 2.5 \times 10^{-3} Q_i$ $40 \ge 2.5 \times 10^{-3} \cdot 15215,89$ $40 \ge 38,04$ 23. As perdas devido a entalpia da escória calculam-se $q_6 = \frac{(100 - a_{vol}) A \cdot I_{esc}}{100 \cdot Q_{dien}} \times 100 = 0,77$ [%]

Se:
$$A^r \ge 2,5 \times 10^{-3} Q_i$$

$$40 \ge 2,5 \times 10^{-3} \cdot 15215,89$$

$$40 \ge 38,04$$

$$q_6 = \frac{(100 - a_{vol}) A \cdot I_{esc}}{100 \cdot Q_{disp}} \times 100 = 0,77 \quad [\%]$$

$$= \frac{(100-0.2)40\cdot 4}{100\cdot 16738,74} \times 100 = 0.95 \quad [\%]$$

Problema 13.1 (Resolução IX)

24. O rendimento térmico do gerador será:

$$\eta_b = 100 \frac{Q_1}{Q_{disp}} = 100 - (q_2 + q_3 + q_4 + q_5 + q_6)$$

$$\eta_b = 100 - (5,955 + 1,5 + 5 + 1,85 + 0,953) = 84,742 \%$$

25. O consumo de combustível é dado por:

$$\dot{B} = \frac{\dot{G} \cdot \left[h_g - h_f \right]}{\eta_b \cdot Q_i}$$

$$\dot{B} = \frac{10000 \cdot \left[3248, 7 - 505, 0 \right]}{0,847 \cdot 15215,89} = 2128,90 \ kg / h \ ou \ 0,591 \ kg / s$$

Problema 13.2


Calcule a temperatura do ar aquecido que entra num gerador de vapor com rendimento térmico de 84,688 %, que queima carvão mineral numa fornalha de extracção de cinzas sólidas, para produzir 25 toneladas de vapor superaquecido por hora à pressão de 15 bar e à temperatura de 350°C, a partir de água saturada. Sabendo que a temperatura dos gases de escape é de 250 °C, o combustível entra no gerador a temperatura de 40°C e a sua composição é dada em massa seca com 60% de Carbono, 5% de Hidrogénio, 3% de Nitrogénio 24% de Oxigénio, 2% de Enxofre 6% de Cinzas e 10% de Humidade. O calor específico do combustível é de 1,4 kJ/kgK, a temperatura do meio ambiente em que se encontra o gerador é de 26°C e a massa específica do combustível é de 800 kg/m³. Que valor percentual da temperatura se perde desde a combustão até à exaustão?

Ca só	aracterísticas das Fornalhas com extracção de cinzas olidas (Tab. 12.3)										
Frof. Doutor Eng. Jorge Mnambiu V Sistem	Combustível	Coeficiente de excesso	Tensão térmica admissível q _v kW/m³ para capacidade de vapor G em t/h				Perdas de calor %				
0		de ar α _f					q_3	q₄ para capacidade			
			25	35	50	75		25	35	50	75
Ī	Lignite	1,2	250	210	190	10	0	5	3	2-3	1-5
	Carvão mineral	1,2	280	250	210	190	0,5	3	1,5-2	1-2	0,5
1	Antracite	1,2	180	170	150	140	0	7	7	6	6
	Turfa fresada	1,2	260	210	190	190	0,5	3	1,5-2	1-2	0,5

Gráfico das Perdas pelo Costado (q₅)

Problema 13.2 (Resolução I)

1.A massa de trabalho do combustível calcula-se de:

$$C^{t} = C^{d} \cdot \frac{100 - W^{t}}{100} = 54,0\%$$

$$H^{t} = H^{d} \cdot \frac{100 - W^{t}}{100} = 4,5\%$$

$$N^{t} = N^{d} \cdot \frac{100 - W^{t}}{100} = 2,7\%$$

$$O^t = O^d \cdot \frac{100 - W^t}{100} = 21,6\%$$

$$S^{t} = S^{d} \cdot \frac{100 - W^{t}}{100} = 1,8\%$$

$$A^{t} = A^{d} \cdot \frac{100 - W^{t}}{100} = 5,4\%$$

$$W^t = 10,0\%$$

Problema 13.2 (Resolução II)

2. O volume teórico do ar é dado por:

$$V_{ar}^{o} = 0,0889 \cdot \left(C^{t} + 0,375 \cdot S^{t}\right) + 0,265 \cdot H^{t} - 0,0333 \cdot O^{t} = 5,334 \left| \frac{m^{3}}{kg} \right|$$

3. O volume teórico dos Gases Biatómicos calcula-se de:

$$V_{N_2}^{o} = 0,79 \cdot V_{ar}^{o} + 0,008 \cdot N^{t} = 4,235 \left[\frac{\text{m}^{3}}{\text{kg}} \right]$$

4. O volume teórico de água obtém-se de:

$$V_{H_20}^{\circ} = 0,1116 \cdot H^t + 0,0124 \cdot W^t + 0,0161 \cdot V_{ar}^{\circ} = 0,712 \left[\frac{m^3}{kg} \right]$$

5. Volume os Gases Triatómicos:

$$V_{R0_2} = 1,867 \cdot \left(C^t + 0,375 \cdot S^t\right) / 100 = 1,021 \left[\frac{\text{m}^3}{\text{kg}}\right]$$

Problema 13.2 (Resolução III)

6. O volume real dos Gases Biatómicos calcula-se de:

$$V_{R2} = V_{N_2}^{o} + (\alpha - 1) \cdot 0,79 \cdot V_{ar}^{o} = 5,499 \left| \frac{m^3}{kg} \right|$$

7. O volume real de água obtém-se de:

$$V_{H_20} = V_{H_20}^{o} + 0.0161 \cdot (\alpha - 1) \cdot V_{ar}^{o} = 0.738 \left[\frac{m^3}{kg} \right]$$

8. O volume dos Gases Triatómicos calcula-se de:

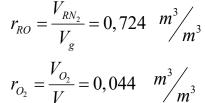
$$V_{R0_2} = 1,867.(C^t + 0,375.S^t)/100 = 1,021 \left[\frac{\text{m}^3}{\text{kg}}\right]$$

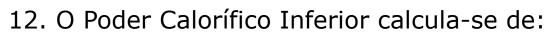
9. O volume do Oxigénio Excedente obtém-se de:

$$V_{0_2} = 0.21 \cdot (\alpha - 1) \cdot V_{ar}^{o} = 0.336 \left[\frac{m^3}{kg} \right]$$

Problema 13.2 (Resolução IV)

10. O volume dos Gases de Combustão calcula-se de:


$$V_g = V_{R0_2} + V_{R2} + V_{H_20} + V_{0_2} = 7,594 \left| \frac{\text{m}^3}{\text{kg}} \right|$$


11. As fracções dos gases obtêm-se de:

$$r_{R0_2} = \frac{V_{R0_2}}{V_g} = 0.134 \quad \frac{m^3}{m^3}$$

$$r_{H_2O} = \frac{V_{RH_2O}}{V_g} = 0.097 \quad \frac{m^3}{m^3}$$

$$r_{H_2O} = \frac{V_{RN_2O}}{V_g} = 0.724 \quad \frac{m^3}{m^3}$$

$$Q_{i}^{t} = 4,187 \left[81C^{t} + 300H^{t} - 26(O^{t} - S^{t}) - 6(W^{t} + 9H^{t}) \right] = 20542,259 \text{ [kJ/kg]}$$

Problema 13.2 (Resolução V)

13. A Entalpia determinada pelo poder calorífico é:

$$I_g = \frac{Q^i}{V_g} = 2705,032 \left[\frac{\text{kJ}}{\text{m}^3} \right]$$

14. A entalpia dos gases obtém-se de:

$$I_{g} = r_{RO_{2}}.(C\theta)_{RO_{2}} + r_{N_{2}}.(C\theta)_{N_{2}} + r_{H_{2}O}.(C\theta)_{H_{2}O} + r_{O_{2}}.(C\theta)_{O_{2}} = 2943,19 \left[\frac{kJ}{m^{3}}\right]$$

15. A temperatura dos gases é **1870,51 °C**

As perdas de temperatura entre a combustão e a exaustão serão dadas por:

$$\frac{1870,51-250}{1870,51} \times 100 = 86,63\%$$

Problema 13.2 (Resolução VI)

$$\eta_b = 100 \frac{Q_1}{Q_{disp}} = 100 - (q_2 + q_3 + q_4 + q_5 + q_6)$$

$$\eta_b = 100 - \left(100 \frac{Q_2}{Q_{disp}} + q_3 + q_4 + q_5 + q_6\right)$$

$$\eta_b = 100 - \left(100 \frac{\dot{B} \cdot V_g \cdot c_{pg} \left(T_{wg} - T_{amb}\right)}{Q_{disp}} + q_3 + q_4 + q_5 + q_6\right)$$

$$\eta_{b} = 100 - \left(100 \frac{\dot{\mathcal{B}} \cdot V_{g} \cdot c_{pg} \left(T_{wg} - T_{amb}\right)}{\left(Q_{i} + Q_{fis,ar} + Q_{fis,comb}\right) \cdot \dot{\mathcal{B}}} + q_{3} + q_{4} + q_{5} + q_{6}\right)$$

$$\eta_{b} = 100 - \left(100 \frac{V_{g} \cdot c_{pg} \left(T_{wg} - T_{amb}\right)}{\left(Q_{i} + V_{ar} \cdot c_{p_{ar}} T_{ar} \cdot \alpha + c_{pcomb} \cdot T_{comb}\right)} + q_{3} + q_{4} + q_{5} + q_{6}\right)$$

Problema 13.2 (Resolução VII)

$$84,695 = 100 - \left(100 \frac{7,594 \cdot 1,414(250 - 26)}{(20542,26 + 5,334 \cdot 1,3 \cdot T_{ar} \cdot 1,2 + 1,4 \cdot 120)} + 0,5 + 3 + 1,20 + 0\right)$$

$$100 - 84,695 - 0,5 - 3 - 1,20 = \frac{225294,317}{\left(20598,26 + 8,415 \cdot T_{ar}\right)}$$

$$T_{ar} = \left(\frac{225294,317}{10,14} - 20598,26\right) / 8,415 \approx 200^{\circ} C$$

