

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Trabalho de Licenciatura

Dimensionamento de uma Caldeira a Biomassa para Esterilização de Material Hospitalar em Zonas Rurais

Estudante: Gaita, Adelino Hawa Mendes

Supervisor: Prof. Doutor Engo. Jorge Olívio Penicela Nhambiu

Maputo, Outubro de 2020

ESTRUTURA DE APRESENTAÇÃO

- 1. Introdução
- 2. Objectivos
- 3. Familiarização com o Processo de Esterilização
- 4. Geradores de Vapor
- 5. Esquema de Funcionamento da Instalação de Esterilização
- 6. Modelo Constructivo da Caldeira
- 7. Marcha de Cálculo
- 8. Resultados e Discussão
- 9. Conclusões e Recomendações

1. INTRODUÇÃO

- A humanidade procura actualmente fontes alternativas de energia em detrimento de combustíveis fósseis. As energias renováveis têm sido uma boa opção para responder a este problema.
- O presente projecto é direccionado ao serviço de saúde, aproveitando as fontes de energia local (biomassa), para a geração de vapor usado na esterilização de material hospitalar.

2. OBJECTIVOS

Objectivo Geral

 Dimensionar caldeira que produz vapor em condições adequadas de esterilização.

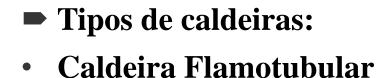
Objectivos Específicos

- Identificar um modelo de esterilização adequado;
- Dimensionar a câmara de esterilização;
- Avaliar do potencial energético de diferentes tipos de biomassa disponíveis;
- Dimensionar a caldeira.

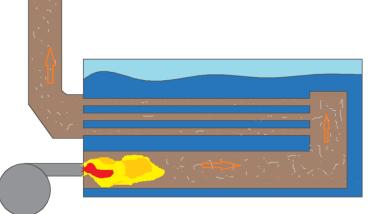
3. FAMILIARIZAÇÃO COM O PROCESSO DE ESTERILIZAÇÃO

■ Esterilização

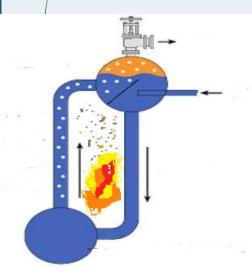
Denomina-se "esterilização" o processo capaz de destruir todas as formas de vida microbiana em superfícies inanimadas. O processo de esterilização deve ser desenhado de modo a matar uma grande população (10 000 a 1000 000 por item) de esporos, bactérias consideradas mais resistentes.

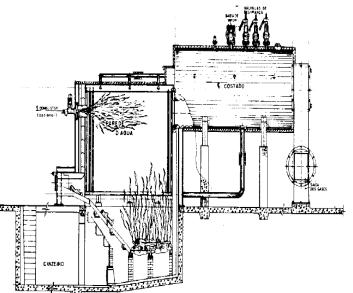

■ Esterilização a vapor

A melhor forma de esterilização é usando calor em forma de vapor, pois garante margens significantes de segurança. Na esterilização a vapor, usa-se vapor saturado tipicamente a temperaturas na faixa de 121° a 140°C.


4. GERADORES DE VAPOR

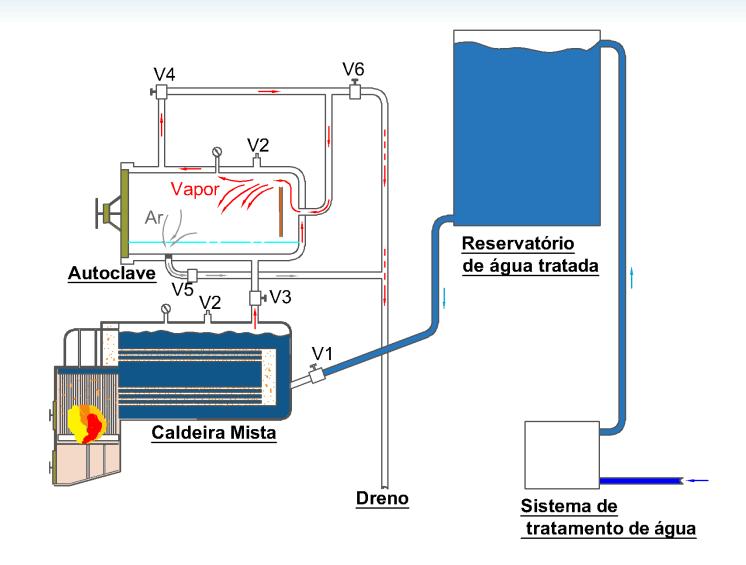
■ Definição


O gerador de vapor ou caldeira é um aparelho usado na conversão de água líquida em vapor saturado ou superaquecido (dependendo da aplicação) a partir do calor gerado pela queima de um combustível.

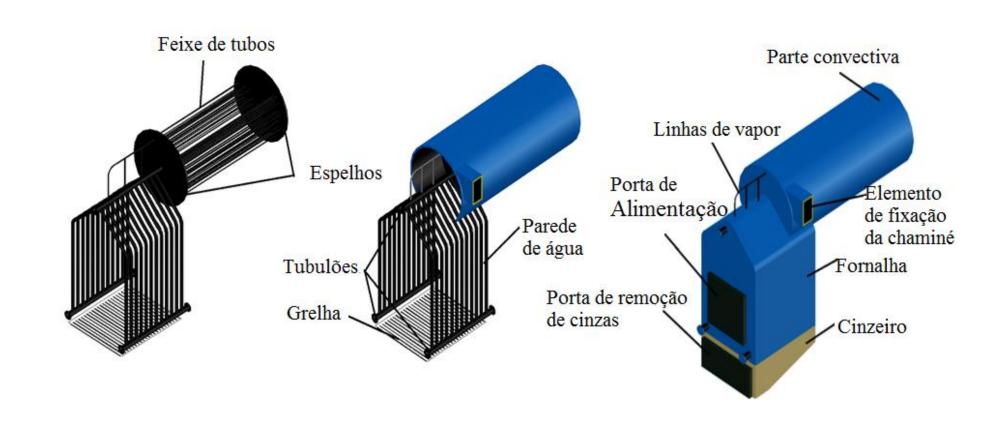


As caldeiras flamotubulares são construídas de forma que a água circule ao redor de muitos tubos, montados em placas denominadas espelhos, em forma de um único feixe tubular.

4. GERADORES DE VAPOR (continuação)


Caldeiras aquatubulares

• As caldeiras aquatubulares são construídas de forma que a água circule no interior de muitos tubos de pequenos diâmetros e dispostos na forma de paredes de água ou feixes de tubos.


■ Caldeiras Mistas

• As caldeiras mistas surgem como resposta à necessidade de utilização de combustíveis sólidos em caldeiras de pequena capacidade. Basicamente é uma caldeira flamotubular com uma antecâmara de combustão com paredes revestidas de tubos de água (parte aquatubular).

5. ESQUEMA DE FUNCIONAMENTO DA INSTALAÇÃO DE ESTERILIZAÇÃO

6. MODELO CONSTRUCTIVO DA CALDEIRA

7. MARCHA DE CÁLCULO

Cálculo de combustão

- Poder calórico inferior
- Temperatura adiabática da chama
- Consumo de combustível
- Dimensionamento térmico da caldeira
 - Superfícies de transferência de calor e arranjo dos elementos da caldeira
 - Calor transferido na fornalha e na parte convectiva
- Dimensionamento térmico da caldeira
 - Espessura dos componentes da caldeira

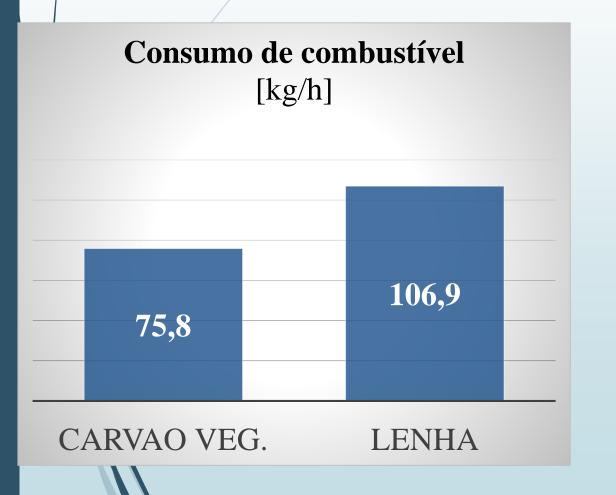
8. RESULTADOS E DISCUSSÃO

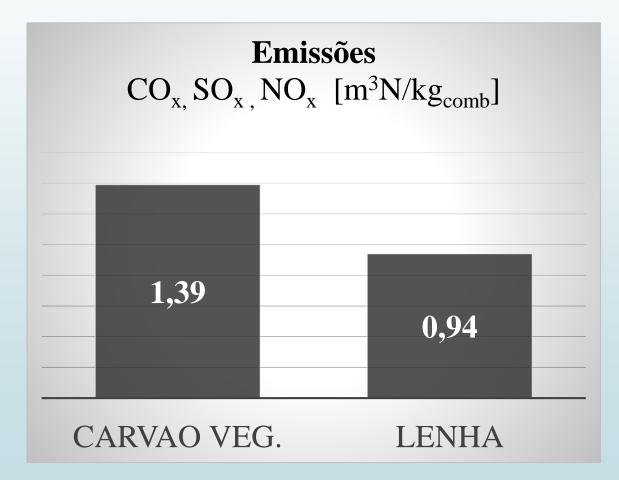
Resultados do dimensionamento da câmara de esterilização

Parâmetro	Valor	Unidade
Diâmetro	0,9	m
Profundidade	2,4	m
Volume da câmara	1,6	m^3
Fluxo de vapor para a	500	kg/h
esterilização		
Temperatura do vapor	133	°C
saturado		

- <u>Câmara de</u>

 <u>esterilização</u>
 <u>de médio porte</u>
- <u>Dimensões</u><u>tiradas do</u><u>catalogo da</u><u>BAUMER</u>


Dados de partida para o dimensionamento da caldeira


Parâmetro	Valor	Unidade
Capacidade da caldeira	500	kg/h
Temperatura do vapor	133	°C
Pressão máxima de trabalho	0,3	МРа
Temperatura da água de	25	°C
alimentação		
Temperatura do ar	25	°C
Rendimento da caldeira	65	%

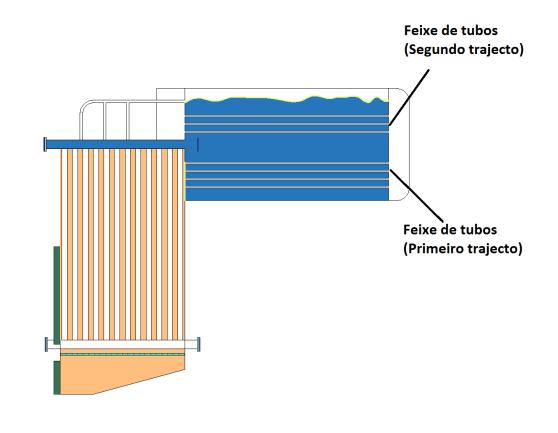
Resultados do cálculo de combustão

	Símb	Valor				
Parâmetro	•	Lenha	Carvão Vegetal	Casca Arroz	de Sabugo de Milho	Unid.
Poder calórico inf.	Q_i^{t}	18822	26560	14426	16928	kJ/kg_{comb}
Temp. adiabática	T_{ad}	1540	1600	1537	1532	°C
Consumo de comb.	\dot{B}	107	76	140	119	kg/h
Energia Inserida	q_{comb}	559			kW	


Consumo de combustível e emissões (carvão vegetal e lenha)

Dimensões da fornalha

Parâmetro	Simb.	Valor	Unid.
Volume da Fornalha	V_f	1,4	m^3
Área da grelha	A_g	0,9	m^2
Altura da Fornalha	H_f	1,6	
Comprimento da fornalha	C_f	1	igg m
Largura da fornalha	L_f	0,9	
Diâmetro interno dos tubos	d_i	40	
Diâmetro interno dos tubulões	D_i	67	$\mid mm \mid$



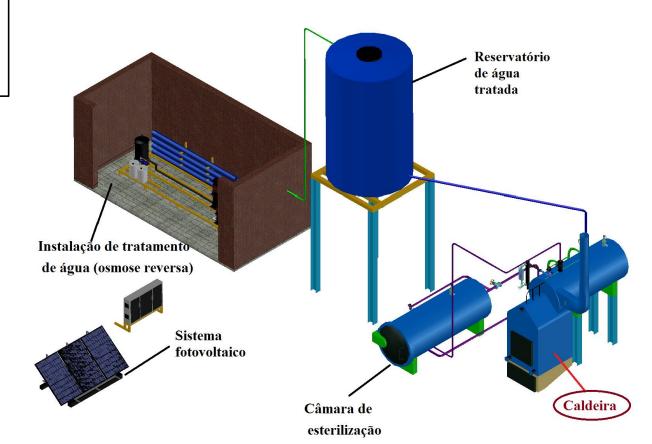
Resultados do cálculo de transferência de calor na fornalha

Parâmetro	Símbolo	Valor	Unidade
Temperatura de saída dos gases de combustão da fornalha	T_s^f	950	°C
Emissividade da fornalha	$arepsilon_f$	0,8	
Distância entre os centros dos tubos aq.	S	84,2	_
Número de tubos por fileira	n_t	12	
Superfície total de aquecimento da fornalha	F	1,97	m^2
Calor absorvido pela fornalha	Q_{abs}	220,37	kW
Recálculo da Temperatura de saída dos gases da fornalha	$T_{s(rec)}^{f}$	863	°C
Erro na temperatura	E	9.16	%

Resultados do cálculo de transferência de calor no feixe de tubos

Símbolo	Valor	Unidade
$Q_{\boldsymbol{v}}$	142,94	kW
T_s^f	950	°C
T_s^c	183	°C
h_{gonv}	5,86	
h_{rad}	9,11	$\frac{W}{(m^2 \cdot {}^{\circ}C)}$
U	12,22	$(m \cdot c)$
n_{t_1}	88	
n_{t_2}	64	_
L	1,7	m
S_v	29,22	m^2

Materiais escolhidos e sua aplicação na caldeira


	Propriedades dos materiais		A .1° ~ .	
Material	E [MPa]	S _y [MPa]	Aplicação	
			-Tubos de	
A CTM 179 C = 70	ASTM 178 Gr 70 200000 92,4	02.4	convecção	
AS1M 1/8 Gr /0		92,4	-Tubos da parede	
			de água	
			-Espelhos	
ASTM A516 Gr 70	200000	132	-Invólucro da	
			caldeira	

Resultados do dimensionamento mecânico

Elemento (Material)	Simb.	Valor (mm)
Tubos de convecção	t	0,38
	t_1	0,5
	t_f	2,1
Tubos da parede de água	t	0,13
	t_1	0,5
	t_f	0,21
Invólucro da caldeira	t	1,2
	t_1	0,6
	t_f	3
Espelhos	t_1	0,1
	t	19,6

Caldeira na instalação de esterilização

A caldeira dimensionada no projecto é só um equipamento na instalação de esterilização de materiais hospitalares.

9. CONCLUSÕES E RECOMENDAÇÕES

Conclusões

- Do estudo realizado sobre a esterilização, conclui-se que a melhor forma de esterilizar é usando calor em forma de vapor, por garantir margens significantes de segurança, isto é, garante a desnaturação irreversível até dos microorganismos mais resistentes, os esporos.
- No presente projecto, foi escolhida uma câmara de esterilização de médio porte, que exige uma caldeira de capacidade de 500 kg/h de vapor saturado a uma temperatura de 133°C. Esta câmara foi escolhida por se estimar não mais de 4 ciclos de esterilização nos hospitais rurais.

9. CONCLUSÕES E RECOMENDAÇÕES

(Continuação)

Conclusões

- Das biomassas analisadas no projecto, verificou-se que o carvão vegetal é a biomassa que apresenta maior poder calórico, mas em contrapartida, emite maior quantidade de gases na sua queima.
- Do cálculo de dimensionamento térmico da caldeira foi possível computar dimensões e arranjos dos componentes da mesma que permitem que o vapor e os gases de combustão saiam nas condições predeterminadas no projecto.
- O cálculo de dimensionamento mecânico da caldeira obteve resultados de espessuras muito baixos. Isso deve-se ao facto da pressão máxima de trabalho da caldeira também ser baixa.

9. CONCLUSÕES E RECOMENDAÇÕES

(Continuação)

Recomendações

- A água de alimentação da caldeira deve ser previamente tratada;
- A caldeira deve ser operada apenas por profissionais qualificados;
- Deve-se aplicar válvulas de segurança com pressão de abertura ajustadas com valor; igual ou inferior à 0,3MPa;
- Deve-se inspecionar periodicamente o nível de água na caldeira.

OBRIGADO PELA ATENÇÃO