

Optimização

Aula 22

Redes

Aula 22: Modelos de Optimização de Redes (Prática)

 O Modelo de rede para Optimizar a relação Conflituosa Tempo-Custo

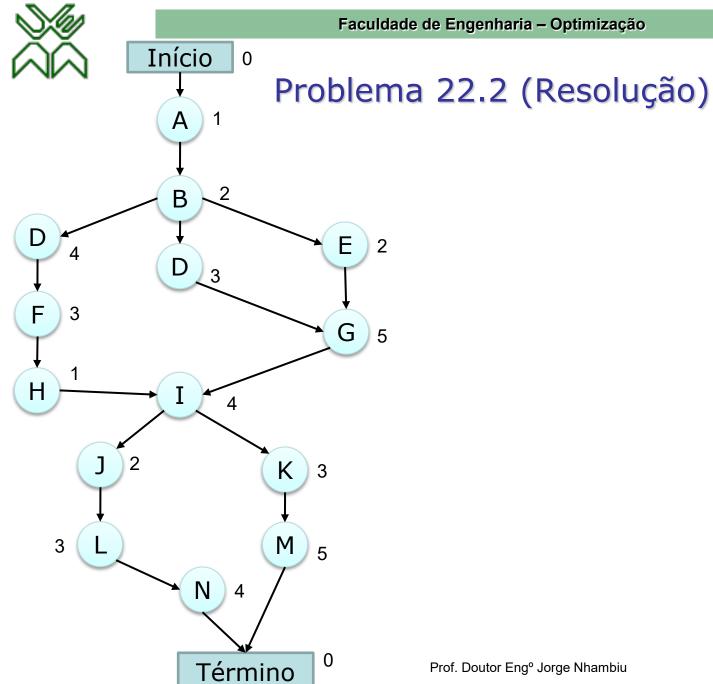
Problema 22.1

Eduardo Sabão tem como tarefa coordenar o próximo curso de actualização dos técnicos de manutenção de frio da empresa Frio Novo. Sabão listou as seguintes actividades a desenvolver para este projecto:

Actividade	Descrição da Actividade	Predecessores Imediatos	Duração estimada
А	Seleccionar o lugar	_	2 semanas
В	Seleccionar os oradores	_	3 semanas
С	Fazer o plano de viagem para os oradores	A,B	2 semanas
D	Preparar e enviar as brochuras	A,B	2 semanas
E	Fazer as reservas	D	3 semanas

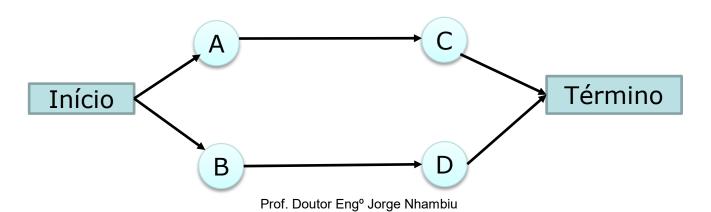
Construir a rede para este projecto.

Problema 22.1 (Resolução)



Construir a rede
para um projecto
com as seguintes
actividades

Problema 22.2


Actividade	Predecessores Imediatos	Duração estimada
А	_	1 mês
В	Α	2 meses
С	В	4 meses
D	В	3 meses
E	В	2 meses
F	С	3 meses
G	D,E	5 meses
Н	F	1 mês
I	G,H	4 meses
J	I	2 meses
K	I	3 meses
L	J	3 meses
M	K	5 meses
N	L	4 meses

Problema 22.3

Uma empresa metalúrgica precisa de construir um projecto de estrutura que deve estar pronto em 12 meses. Este projecto tem quatro actividades nomeadamente (A, B, C e D) como se mostra no diagrama. O Engenheiro Chefe Mutawanha, conclui que ele não será capaz de cumprir o prazo estabelecido executando todas as actividades de maneira normal. Portanto, Mutawanha decidiu usar o método CPM de relações conflituosas tempo-custo, para determinar a maneira mais económica de se impactar o projecto para se cumprir os prazos.

Problema 22.3 (II)

Ele compilou os dados para a relação conflituosa tempo-custo para as quatro actividades que se encontram na seguinte tabela:

Actividade	Tei	mpo	Custo		
Actividade	Normal	Impactado	Normal	Impactado	
Α	8 meses	5 meses	US\$25000	US\$40000	
В	9 meses	7 meses	US\$20000	US\$30000	
С	6 meses	4 meses	US\$16000	US\$24000	
D	7 meses	4 meses	US\$27000	US\$45000	

Use a análise de custo marginal para resolver este problema.

Problema 22.3 (Resolução)

Actividade a ser	Conto inconstale	Comprimento do caminho				
impactada	Custo impactado	A-C	4 16 4 15			
		14	16			
В	US\$ 5000	14	15			
В	US\$ 5000	14	14			
С	US\$ 4000	13	14			
D	US\$ 6000	13	13			
С	US\$ 4000	12	13			
D	US\$ 6000	12	12			

Problema 22.4 (I)

Reconsidere o Problema 22.3 da empresa metalúrgica. Na época da Faculdade, Mutawanha fez um curso de optimização no qual teve um mês de programação linear de modo que Mutawanha decidiu usar a programação linear para analisar este problema

a) Considere o caminho superior da rede do projecto. Formule um modelo de programação linear de duas variáveis para o problema de como minimizar o custo de executar essa sequência de actividades em um prazo de 12 meses. Use o método gráfico para resolver esse modelo.

Problema 22.4 (II)

- b) Repita o Item a) para o caminho inferior da rede do projecto
- c) Combine os modelos dos itens a) e b) em um único modelo completo de programação linear para o problema de minimização do custo para finalizar o projecto dentro de 12 meses. Qual seria uma solução óptima para este problema?
- d) Utilize a formulação de programação linear CPM apresentada na Aula 21 para formular um modelo completo para esse problema.

Problema 22.4 (Solução I)

Seja x_A – redução em A feita com o impacto

Seja $x_{\rm C}$ – redução em C feita com o impacto

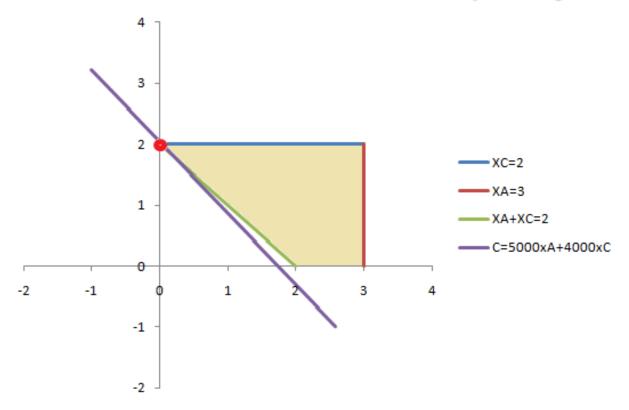
Minimize
$$C = 5 000 x_A + 4 000 x_c$$

Sujeito a:

$$x_A \leq 3$$

$$x_C \leq 2$$

$$x_A + x_C \ge 2$$


$$x_{C} \leq 2$$

$$x_{A} + x_{C} \geq 2$$

$$Com x_{A} \geq 0, x_{C} \geq 0$$

Problema 22.4 (Solução II)

Solução óptima $(x_A,x_C)=(0,2)$ e C = 8 000

Problema 22.4 (Solução III)

Seja $x_{\rm B}$ – redução em B feita com o impacto

Seja x_D – redução em D feita com o impacto

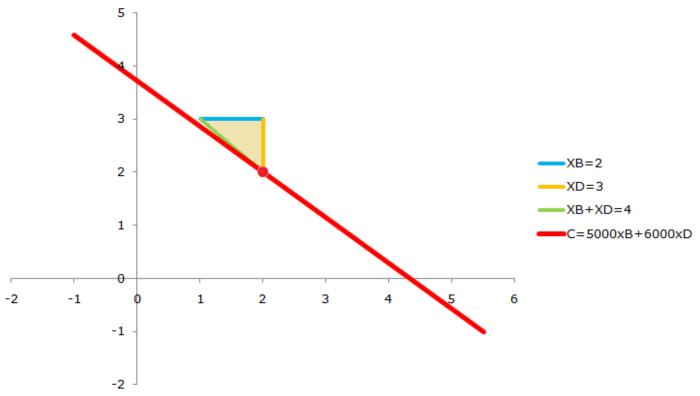
Minimize
$$C = 5 000 x_B + 6 000 x_D$$

Sujeito a:

$$x_B \leq 2$$

$$x_D \leq 3$$

$$x_B + x_D \ge 4$$


$$x_D \le 3$$

$$x_B + x_D \ge 4$$

$$\operatorname{Com} x_B \ge 0, x_D \ge 0$$

Problema 22.4 (Solução IV)

Solução óptima $(x_B,x_D)=(2,2)$ e C = 22 000

Problema 22.4 (Solução V)

Seja x_A – redução em A feita com o impacto

Seja x_B – redução em B feita com o impacto

Seja x_C – redução em C feita com o impacto

Seja x_D – redução em D feita com o impacto

Minimize $C = 5\ 000\ x_A + 5\ 000\ x_B + 4\ 000\ x_C + 6\ 000\ x_D$

Problema 22.4 (Solução VI)

Sujeito a:

$$x_A \leq 3$$

$$x_B \leq 2$$

$$x_C \leq 2$$

$$x_D \leq 3$$

$$x_A + x_C \ge 2$$

$$|x_{B}| = 2$$

$$|x_{C}| \le 2$$

$$|x_{D}| \le 3$$

$$|x_{A} + x_{C}| \ge 2$$

$$|x_{B} + x_{D}| \ge 4$$

Com
$$x_A \ge 0$$
, $x_B \ge 0$, $x_C \ge 0$, $x_D \ge 0$

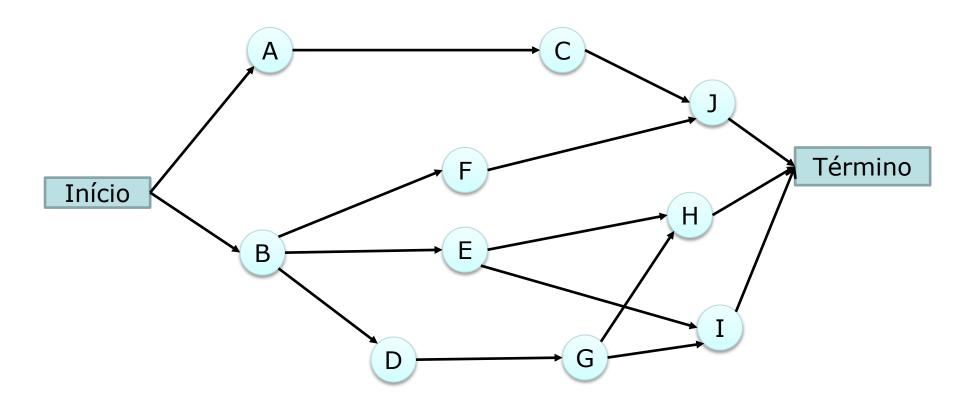
Solução óptima $(x_A, x_B, x_C, x_D) = (0, 2, 2, 2)$ e C = 30 000

Problema 22.4 (Solução VII)

				Redução	Custo Impactado			
Те	mpo	Cu	ısto	de tempo	por semana	Horário	Redução	Horário de
Normal	Impactado	Normal	Impactado	máxima	reduzida	de início	de Tempo	Término
8	5	\$ 25 000,00	\$ 40 000,00	3	\$ 5 000,00	0	0	8
9	7	\$ 20 000,00	\$ 30 000,00	2	\$ 5 000,00	0	2	7
6	4	\$ 16 000,00	\$ 24 000,00	2	\$ 4 000,00	8	2	12
7	4	\$ 27 000,00	\$ 45 000,00	3	\$ 6 000,00	7	2	12

Tempo de Término do Projecto	12	≤	12
------------------------------	----	---	----

\$ 30 000,00



Trabalho Para Casa (I)

A Lockead Aircraft Co, estás prestes a iniciar um projecto de um novo avião de combate para a força aérea norte-americana. O contrato da empresa com o Departamento de Defesa determina um prazo de 92 semanas para finalização do projecto, com imposição de multas caso o projecto seja entregue com atraso. O projecto envolve dez actividades chamadas (A, B, C,...,J) cujas relações de precedência são mostradas na rede a seguir:

Trabalho Para Casa (II)

Trabalho Para Casa (III)

A gerência gostaria de evitar as pesadas multas impostas pelo não cumprimento do prazo de entrega estabelecido no contrato actual. Portanto a decisão tomada foi de impactar o projecto usando o método CPM de relações conflituosas tempo-custo para determinar como fazer isso da forma mais económica. Os dados necessários para aplicação do método são dados a seguir:

Trabalho Para Casa (IV)

Actividade	Tempo		Custo	
Actividade	Normal	Impactado	Normal	Impactado
Α	32 semanas	28 semanas	US\$160 milhões	US\$180 milhões
В	28 semanas	25 semanas	US\$125 milhões	US\$146 milhões
С	36 semanas	31 semanas	US\$170 milhões	US\$210 milhões
D	16 semanas	13 semanas	US\$ 60 milhões	US\$ 72milhões
E	32 semanas	27 semanas	US\$135 milhões	US\$160 milhões
F	54 semanas	47 semanas	US\$215 milhões	US\$257 milhões
G	17 semanas	15 semanas	US\$ 90 milhões	US\$ 96 milhões
Н	20 semanas	17 semanas	US\$120 milhões	US\$132 milhões
I	34 semanas	30 semanas	US\$190 milhões	US\$226 milhões
J	18 semanas	16 semanas	US\$ 80 milhões	US\$ 84 milhões

Trabalho Para Casa (V)

- Formule o modelo de programação linear para o presente a) problema;
- Use o Solver do Excel para resolver o problema.

Enviar até a 0 hora de sexta-feira dia 3 de Novembro com o "subject": TPC07