

Transmissão de calor

3º ano

Aula 3 º 2. Equação diferencial de condução de calor (cont...)

Tópicos:

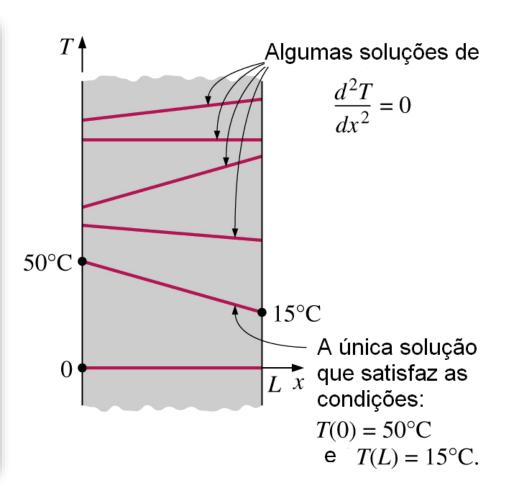
- Condições iniciais e condições de fronteira;
- □ Geração de Calor num Sólido;
- □ Condutibilidade Térmica Variável.

2.6 Condições iniciais e condições de fronteira

Para determinar a distribuição de temperatura em um meio, é necessário resolver a forma apropriada da equação de calor. Tal resolução depende das condições físicas existentes na fronteira do sistema e se a situação varia ao longo do tempo a solução também depende das condições existentes no sistema em dado instante inicial.

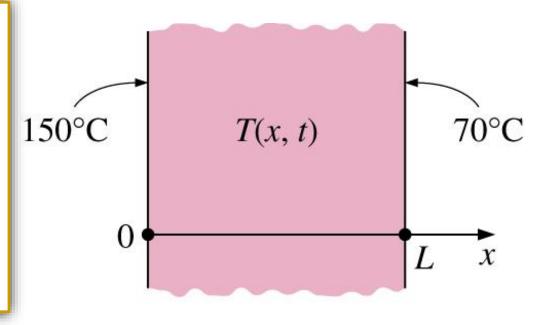
2.6 Condições iniciais e condições de fronteira

Para descrever por completo um problema de transferência de calor, devem ser dadas duas condições de contorno, para cada direcção ao longo da qual a transferência de calor é significante.



2.6.1 Temperatura especificada

Condição de contorno de temperatura especificada em ambas as superfícies de uma parede plana.



$$T(0, t) = 150$$
°C

$$T(L, t) = 70^{\circ} C$$

2.6.1 Temperatura especificada

A condição que é geralmente especificada no instante t=0 é chamada condição inicial, que é a expressão matemática da distribuição da temperatura no meio, inicialmente.

Em coordenadas rectangulares, as condições iniciais em geral são dadas pela expressão:

$$T(x, y, z, 0) = f(x, y, z)$$
 (2.45)

Onde f(x,y,z) representa a distribuição da temperatura no meio no instante t=0.

2.6.1 Temperatura especificada

A temperatura de um meio pode ser directamente facilmente medida . Daí uma das maneiras mais fáceis de especificar as condições térmicas de uma superfície é predizer a temperatura. Para um sistema unidimensional de transferência de calor num plano de espessura L, as condições de temperatura especificada na fronteira podem ser escritas da seguinte maneira:

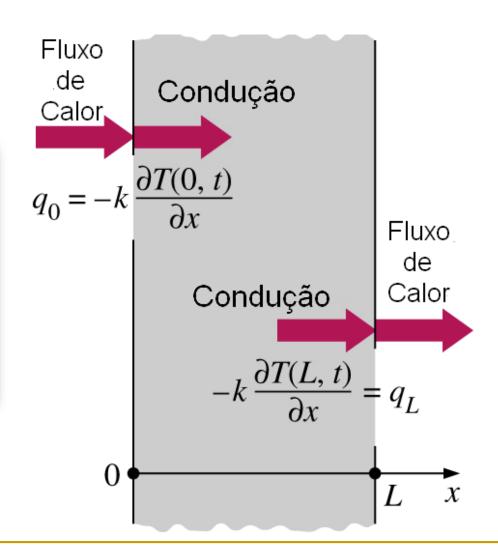
$$T(0,t) = T_1$$

$$T(L,t) = T_2$$
(2.46)

Onde T_1 e T_2 são as temperaturas especificadas nas superfícies x=0 e x=L respectivamente

2.6.2 Fluxo Prescrito

Condições de contorno de fluxo prescrito em ambas as paredes do plano.



2.6.2 Fluxo Prescrito

Se houver informação suficiente das interacções de energia na superfície é possível determinar-se a taxa de calor transferido e dai o fluxo. A taxa de calor transferido na direcção positiva **x** em qualquer lugar do meio, incluindo nas fronteiras, pode ser expressa pela lei de Fourier de condução de calor da seguinte forma:

$$\dot{q} = -k \frac{\partial T}{\partial x} = \begin{pmatrix} \text{Fluxo de calor na} \\ \text{direcção positiva de x} \end{pmatrix} \qquad (W/m^2)$$
 (2.47)

As condições de fronteira são obtidas igualando o fluxo de calor a $-k(\partial T/\partial x)$ na fronteira.

2.6.2 Fluxo Prescrito

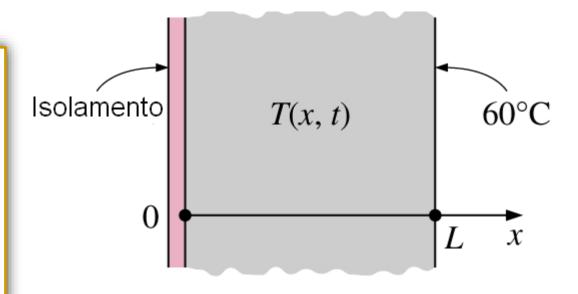
Por exemplo para uma parede de espessura L sujeita a um fluxo de calor de 50 W/m² no meio, nas duas paredes o fluxo de calor especificado é dado por:

$$-k\frac{\partial T(0,t)}{\partial x} = 50 \quad \text{ou} \quad -k\frac{\partial T(L,t)}{\partial x} = -50 \quad (2.48)$$

É de notar que o fluxo de calor na superfície em x = L está na direcção negativa de x daí ser -50 W/m².

2.6.2 Fluxo Prescrito (parede plana isolada)

Parede plana isolada e condição de contorno de temperatura prescrita.



$$\frac{\partial T(0, t)}{\partial x} = 0$$
$$T(L, t) = 60^{\circ} \text{C}$$

2.6.2 Fluxo Prescrito (parede plana isolada)

Algumas superfícies são isoladas de forma a diminuir as perdas de calor. As condições de contorno numa superfície perfeitamente isolada (em x=0 por exemplo) pode ser expressa por:

$$k\frac{\partial T(0,t)}{\partial x} = 0$$

ou

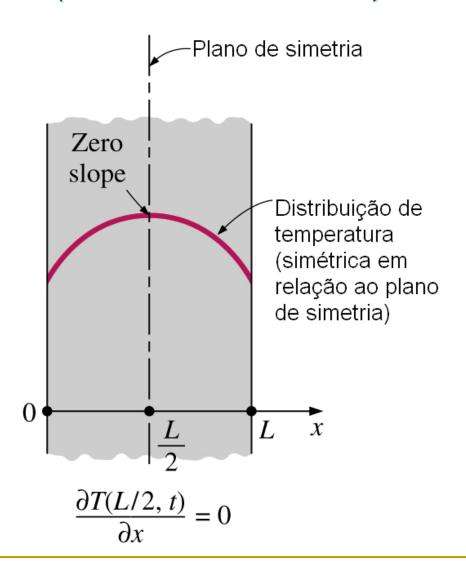
$$\frac{\partial T(0,t)}{\partial x} = 0$$

(2.49)

É uma superfície isolada, então a primeira derivada da temperatura em relação as variáveis espaciais na direcção normal à superfície isolada é zero.

2.6.2 Fluxo Prescrito (simetria térmica)

Condições de contorno térmicas simétricas para o centro de uma parede plana.



2.6.2 Fluxo Prescrito (simetria térmica)

Alguns problemas de transmissão de calor possuem uma simetria térmica, como resultado da simetria das condições de contorno impostas.

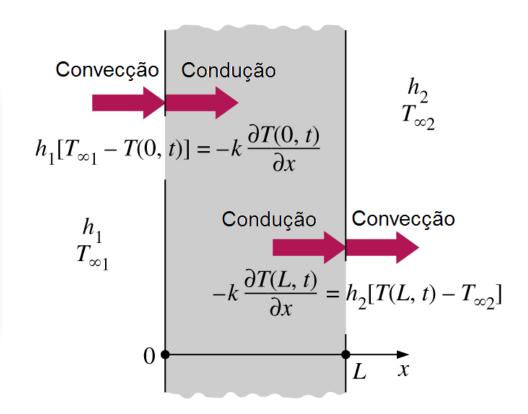
O centro do plano pode ser visto como uma superfície isolada e daí as condições térmicas deste plano de simetria podem ser expressas por:

$$\frac{\partial T(L/2,t)}{\partial x} = 0 \tag{2.50}$$

Que assemelha-se à condição de fronteira de transferência de calor com isolamento ou de transferência zero.

2.6.3 Convecção como condição de contorno

Condições de contorno de convecção nas duas superfícies do plano.



2.6.3 Convecção como condição de contorno

Condução de calor numa superfície numa direcção seleccionada

Convecção de calor numa superfície numa mesma direcção

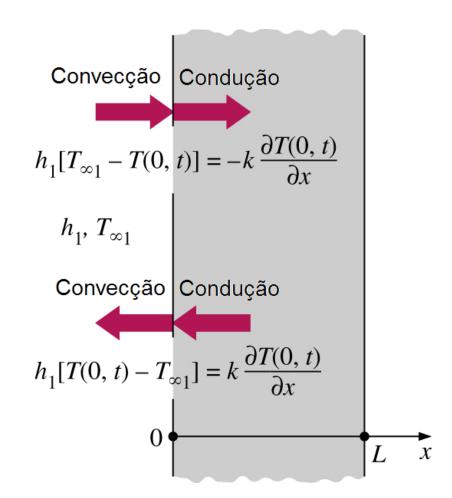
Para a transferência de calor unidirecional, na direcção **x** em uma placa de espessura **L**, as condições de fronteira de convecção em cada uma das superfícies podem ser escritas como:

$$-k\frac{\partial T(0,t)}{\partial x} = h_1 \left[T_{\infty 1} - T(0,t) \right]$$

$$-k\frac{\partial T(L,t)}{\partial x} = h_2 \Big[T(L,t) - T_{\infty 2} \Big]$$

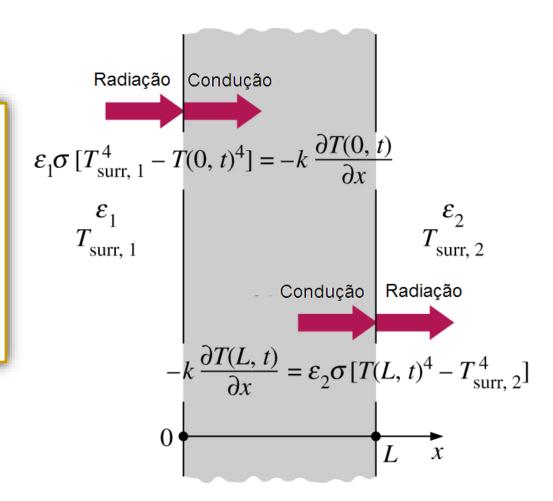
2.6.3 Convecção como condição de contorno

A direcção de transferência de calor assumida na fronteira, não afecta a expressão da condição de fronteira.



2.6.4 Radiação como condição de contorno

Condições de fronteira de radiação em ambas as superfícies de uma parede plana.



2.6.4 Radiação como condição de contorno

Condução de calor numa superfície numa direcção seleccionada

Radiação de calor numa superfície numa mesma direcção

Para a transferência de calor unidireccional, na direcção x em uma placa de espessura L, as condições de fronteira de radiação em cada uma das superfícies podem ser escritas como:

$$-k\frac{\partial T(0,t)}{\partial x} = \varepsilon_1 \sigma \left[T_{\sup,1}^4 - T(0,t)^4 \right]$$

$$-k\frac{\partial T(0,t)}{\partial x} = \varepsilon_2 \sigma \left[T(L,t)^4 - T_{\sup,2}^4 \right]$$

(2.52b)

2.6 Condições iniciais e condições de fronteira

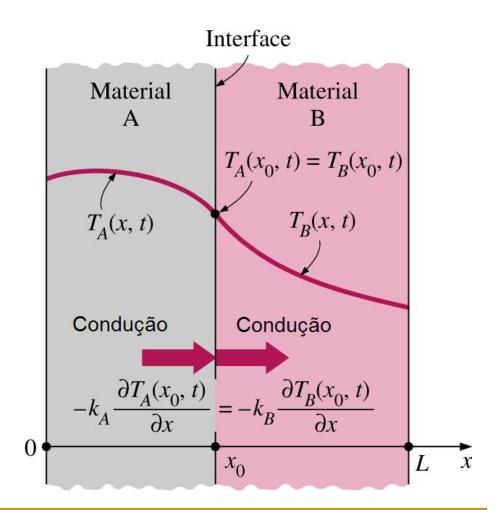
Alguns corpos são construídos de diferentes materiais, então para se resolver a equação de transferência de calor, nestes corpos, precisa-se de uma solução para cada um dos meios. As condições de fronteira na interface estão baseadas em dois requisitos:

Os dois corpos em contacto devem ter a mesma temperatura na área de contacto;

A superfície de interface (superfície de contacto) não pode armazenar energia.

2.6.5 Condição de contorno no interface

Condições de fronteira na interface de dois corpos em contacto perfeito



2.6.5 Condição de contorno no interface

As condições de fronteira na interface de dois corpos A e B em perfeito contacto em $x = x_0$ podem ser dadas pelas expressões:

$$T_A(x_0,t) = T_B(x_0,t)$$
 (2.53)

$$-k_{A} \frac{\partial T_{A}(x_{0}, t)}{\partial x} = -k_{B} \frac{\partial T_{B}(x_{0}, t)}{\partial x}$$
 (2.54)

Onde k_A e k_B, são as condutibilidades térmicas dos corpos A
 e B respectivamente.

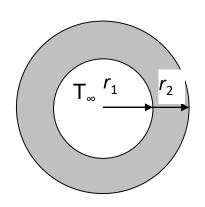
Exemplo 3.1

Considere um recipiente esférico de raio interior r_1 , raio exterior r_2 e condutividade térmica k. Expresse a condição de contorno na superfície interna do recipiente para condução unidimensional estacionária nos seguintes casos:

- (a)temperatura especificada de 50 ° C;
- (b)fluxo de calor especificado de 30 W/m² em direção ao centro;
- (c) convecção de um meio a T_{∞} , com um coeficiente de

transferência de calor h.

Exemplo 3.1 (Solução)



(a) temperatura especificada de 50°C

$$T(r_1) = 50^{\circ} \text{C}$$

(b) fluxo de calor específicado de 30 W/m² em direção ao centro

$$k\frac{dT(r_1)}{dr} = 30 \text{ W/m}^2$$

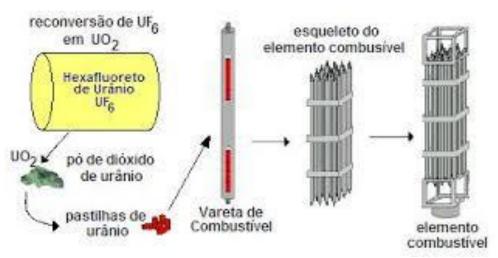
(c) convecção para um meio a T_∞, com um coeficiente de transferência de calor h.

$$k\frac{dT(r_1)}{dr} = h[T(r_1) - T_{\infty}]$$

Muitas das aplicações práticas de transmissão de calor, envolvem a conversão de alguma forma de energia, em energia térmica dentro do meio. A esse meio designa-se por meio que envolve geração interna.

Alguns exemplos de geração de calor são: a resistência de fios eléctricos, as reacções químicas isotérmicas em sólidos, e as reacções nucleares em briquetes de combustível nuclear.

Reacções químicas



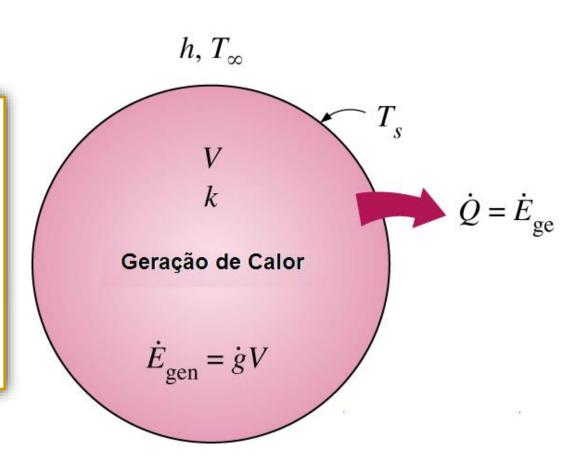
Pastilhas de Combustível nuclear

A geração de calor é geralmente expressa por unidades de volume do meio e é designada por ${\bf g}$. Por exemplo o calor gerado por um fio de raio externo ${\bf r_0}$ e comprimento ${\bf L}$ pode ser expresso por:

$$\dot{g} = \frac{\dot{E}_{g.Elect.}}{V_{fio}} = \frac{I^2 R_e}{\pi \cdot r_e^2 L}$$
 (W/m³) (2.55)

Onde I é a intensidade de corrente e R_e a resistência eléctrica do fio.

No estado
estacionário, o calor
total gerado no sólido
deve abandona-lo pela
sua superfície externa



Considerando um sólido de superfície A_s , volume V, e condutibilidade térmica constante k, onde o calor é gerado a uma taxa constante por unidade de volume. O calor é transferido do sólido para o meio circundante de temperatura T_{∞} , com um coeficiente de transferência de calor por convecção h, constante. Todas as superfícies do sólido são mantidas a mesma temperatura T_s . Perante condições de regime permanente, o balanço de energia no sólido pode ser escrito como:

Taxa de transferência de calor do sólido

Taxa de geração dentro do sólido

Ou:

$$\dot{Q} = \dot{g}V \tag{W}$$

Introduzindo o coeficiente de convecção **h**, a taxa de transferência de calor pode ser escrita pela Lei de resfriamento de Newton

$$\dot{Q} = hA_s \left(T_s - T_{\infty} \right) \tag{W}$$

Combinando as Expressões 2.56 e 2.57 e resolvendo em função da temperatura $\mathbf{T}_{\mathbf{s}}$, obtém-se:

$$T_s = T_\infty + \frac{\dot{g}V}{hA_s} \tag{2.58}$$

Para uma parede plana, um cilindro longo maciço e uma esfera maciça, respectivamente, a equação transforma-se em:

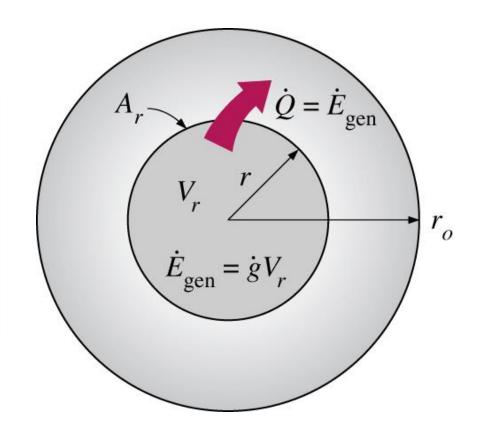
$$T_{\text{s, parede plana}} = T_{\infty} + \frac{\dot{g}L}{h}$$
 (2.59)

$$T_{\text{s, cilindro}} = T_{\infty} + \frac{\dot{g}r_0}{2h} \tag{2.60}$$

$$T_{\text{s, esfera}} = T_{\infty} + \frac{\dot{g}r_0}{3h} \tag{2.61}$$

é de notar que o aumento da temperatura T_s na parede do sólido é conseguido a custa da geração interna.

O calor conduzido através de uma carcaça cilíndrica de raio **r** é igual ao calor gerado sem a carcaça.



Considere-se um cilindro imaginário de raio **r** com um cilindro no seu interior. O calor gerado pelo cilindro interno deve ser igual ao calor conduzido através das suas paredes externas. Da lei de Fourier para a condução:

$$-kA_r \frac{dT}{dr} = \dot{g}V_r \tag{2.62}$$

Onde $A_r=2\pi rL$ e $V_r=\pi r^2L$. Substituindo estas expressões na Equação 2.62 e separando as variáveis obtém-se:

$$-k(2\pi rL)\frac{dT}{dr} = \dot{g}(\pi r^2L) \rightarrow dT = -\frac{\dot{g}}{2k}rdr \qquad (2.63)$$

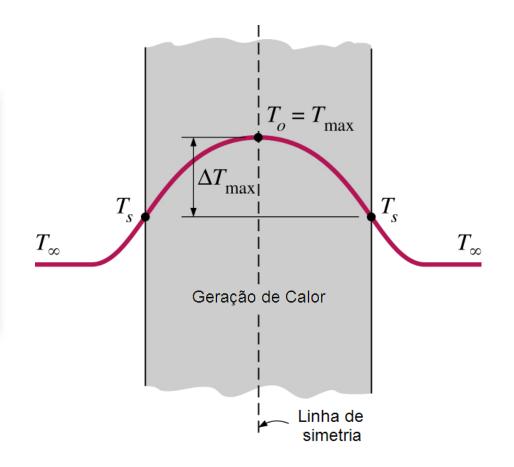
Integrando de r=0 onde $T(0)=T_0$ até r= r_0 onde $T(r_0)=T_s$ obtémse:

$$\Delta T_{\text{max,cilindro}} = T_0 - T_s = \frac{\dot{g}r_0^2}{4k}$$
 (2.64)

Onde T_0 é a temperatura no centro do cilindro que é a temperatura máxima e ΔT_{max} a diferença entre a temperatura central e da superfície do cilindro. Desde que ΔT_{max} seja conhecida, a temperatura no centro do cilindro pode ser facilmente determinada por:

$$T_{centro} = T_0 = T_s + \Delta T_{\text{max}} \tag{2.65}$$

Temperatura máxima num sólido simétrico com geração uniforme de calor ocorrendo no seu centro.



As aproximações acima podem ser utilizadas para determinar a diferença máxima de temperatura num plano de espessura 2L e numa esfera maciça de raio r_0 resultando no seguinte:

$$\Delta T_{\text{max, parede plana}} = \frac{\dot{g}L^2}{2k} \tag{2.66}$$

$$\Delta T_{\text{max},esfera} = \frac{\dot{g}r_0^2}{6k} \tag{2.67}$$

Da mesma forma que na Equação 2.65, a temperatura máxima no centro pode ser determinada adicionando à temperatura da parede a diferença máxima de temperatura.

Exemplo 3.2

É gerado calor em um fio longo de raio r₀ a uma taxa constante de g₀ por unidade de volume. O fio é coberto com uma camada de isolamento de plástico. Expressar a condição de contorno de fluxo de calor na interface em função do calor gerado.

Exemplo 3.2 (Solução)

O calor total gerado no fio eo fluxo de calor na interface são:

$$\dot{G} = \dot{g}_0 V_{fio} = \dot{g}_0 (\pi r_0^2 L)$$

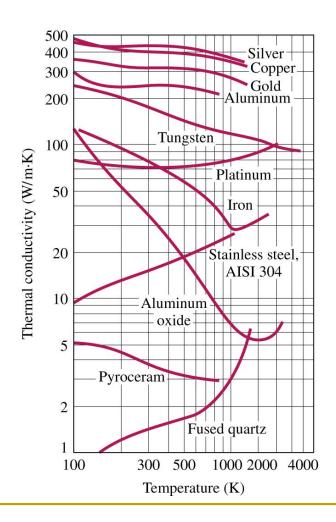
$$\dot{q}_s = \frac{\dot{Q}_s}{A} = \frac{\dot{G}}{A} = \frac{\dot{g}_0 (\pi r_0^2 L)}{(2\pi r_0)L} = \frac{\dot{g}_0 r_0}{2}$$

Supondo um equilíbrio da condução unidimensional na direção radial, a condição de contorno de fluxo de calor pode ser expressa como:

$$-k\frac{dT(r_0)}{dr} = \frac{\dot{g}_0 r_0}{2}$$

Como já foi mencionado a condutibilidade térmica do material varia com a temperatura. Contudo esta variação é desprezível para a gama de temperaturas nas quais muitos dos materiais se usam, ai utiliza-se um valor médio do coeficiente e considera-se este uma constante.

Variação da condutibilidade de certos sólidos em função da temperatura.



Quando a variação da condutibilidade térmica do material em função da temperatura k(T) é conhecida, o valor médio do coeficiente de condutibilidade térmica no intervalo de temperaturas entre T_1 e T_2 pode ser determinado de:

$$k_{m\acute{e}dio} = \frac{\int_{T_1}^{T_2} k(T) dT}{T_2 - T_1}$$
 (2.68)

O fluxo de calor transferido em uma parede plana, num cilindro ou numa esfera, para o caso de condutibilidade térmica variável pode ser determinado de:

$$Q_{\text{parede plana}} = k_{\text{médio}} A \frac{T_1 - T_2}{L} = \frac{A}{L} \int_{T_2}^{T_1} k(T) dT$$
 (2.69)

$$Q_{\text{cilindro}} = 2\pi k_{m\acute{e}dio} L \frac{T_1 - T_2}{\ln(r_2/r_1)} = \frac{2\pi L}{\ln(r_2/r_1)} \int_{T_2}^{T_1} k(T) dT$$
 (2.70)

$$Q_{\text{esfera}} = 4\pi k_{\text{médio}} r_1 r_2 \frac{T_1 - T_2}{r_2 - r_1} = \frac{4\pi \cdot r_1 r_2}{r_2 - r_1} \int_{T_2}^{T_1} k(T) dT$$
 (2.71)

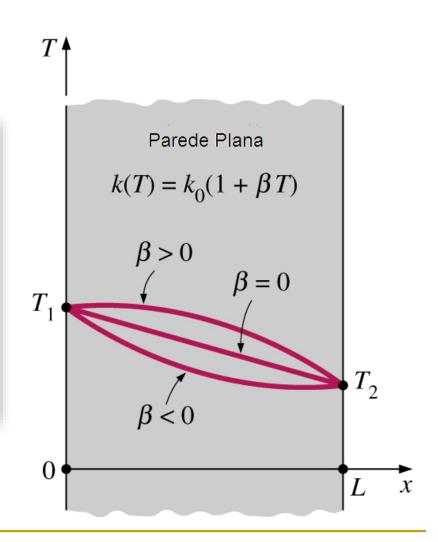
A variação da condutibilidade térmica do material em função da temperatura num intervalo de interesse pode ser dada por aproximação como uma função linear

$$k(T) = k_0 (1 + \beta T) \tag{2.72}$$

Onde β é designado por coeficiente da temperatura da condutibilidade térmica. O valor médio da condutibilidade térmica no intervalo de temperatura T₁ e T₂, pode ser escrito como:

$$k_{medio} = \frac{\int_{T_1}^{T_2} k_0 (1 + \beta T) dT}{T_2 - T_1} = k_0 \left(1 + \beta \frac{T_2 + T_1}{2} \right) = k \left(T_{médio} \right)$$
 (2.73)

Variação da temperatura numa parede plana com regime unididimensional de condução de calor, para os casos de condutibilidade térmica constante e variável.

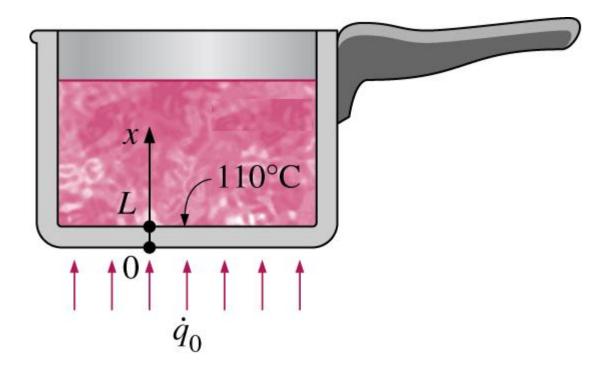


Exemplo 3.3

Considere uma frigideira de alumínio, usada para cozinhar um bife num fogão eléctrico. A secção inferior da frigideira tem a espessura de L=0,3 cm e o diâmetro D=20 cm.

A unidade eléctrica de aquecimento consome 800 W de potência para cozinhar, e 90 por cento do calor gerado no elemento de aquecimento são transferidos à frigideira. Durante a operação em regime estacionário, a temperatura da superfície interna da frigideira é de 110°C. Apresente as condições de contorno para a secção inferior da frigideira durante este processo.

Exemplo 3.3



Exemplo 3.3 Resolução I

A transferência de calor faz-se através da secção inferior da frigideira, da superfície inferior para a superior e pode razoavelmente ser aproximada a unidimensional. Vai-se fazer a análise no sentido normal à superfície inferior da frigideira com o eixo central x com a origem na superfície exterior, como mostrado na figura.

Exemplo 3.3 Resolução II

Então as superfícies interna e externa da secção inferior da frigideira podem ser representadas por x=0 e x=L respectivamente. Durante a operação em regime estacionário, a temperatura dependerá somente de x e assim T=T(x). A condição de contorno na superfície exterior do fundo da frigideira em x=0 pode ser aproximada a fluxo de calor prescrito contando que só 90 por cento dos 800 W (isto é, 720 W) são transferidos à frigideira por essa superfície.

Consequentemente:

Exemplo 3.3 Resolução III

$$-k\frac{dT(0)}{dx} = \dot{q}_o$$

Onde:

$$\dot{q}_o = \frac{\text{Taxa de Transferência de Calor}}{\text{Área da superfície do fundo}} = \frac{0,720 \text{ kW}}{\pi (0,1 \text{ m})^2} = 22,9 \text{ kW/m}^2$$

Exemplo 3.3 Resolução IV

A temperatura na superfície interna do fundo da frigideira é prescrita como sendo 110°C. Então a condição de fronteira nesta superfície pode ser expressa como:

$$T(L) = 110^{\circ} C$$

onde L = 0,003 m. É de notar que a determinação das condições de limite pode requerer algum raciocínio e aproximações.