

UNIVERSIDADE EDUARDO MONDLANE – Faculdade de Engenharia

Transmissão de calor

3º ano

Aula 9 º 4. Transmissão de Calor em Regime Transiente

Tópicos:

- Introdução
- Sistemas Concentrados
- Condução de Calor em regime Transiente com Efeitos Espaciais
- Fluxo de calor transiente num sólido semi-finito
- Fluxo de calor transiente em Sistemas Multidimensionais

4. Transmissão de Calor em Regime Transiente

A temperatura de um corpo, em geral, varia com o tempo, bem como com a posição. Em coordenadas retangulares, essa variação é expressa como T(x,y,z,t), onde (x,y,z) indica a variação nos eixos x, y, e z, respectivamente, e t indica a variação no tempo. Até aqui, considerou-se a condução de calor sob condições de equilíbrio, para as quais a temperatura de um corpo em qualquer ponto não varia com o tempo.

4. Transmissão de Calor em Regime Transiente

A consideração de condições de equilíbrio certamente simplificou a análise, especialmente porque a temperatura variou numa única direção e conseguiu-se obter soluções analíticas. Agora vai-se considerar a variação da temperatura com o tempo, bem como com a posição em sistemas uni e multidimensionais.

-

4. 1 Introdução

Considere-se a placa infinita de espessura 2L. Inicialmente a placa está a temperatura T_i e no tempo τ maior que zero as superfícies são subitamente resfriadas até a temperatura $T = T_1$

Para analisar a transmissão de calor pode-se resolver a equação geral pelo método de separação de variáveis:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau}$$
(4.1)

Introduzindo: $\theta \equiv T - T_{\infty}$ Obtém-se:

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{\alpha} \frac{\partial \theta}{\partial \tau}$$
(4.2)

Admitindo-se para a solução um produto $\theta(x,\tau)=X(x)\tau(t)$ obtém-se:

$$\frac{1}{\alpha} X \frac{d\tau}{dt} = \tau \frac{d^2 X}{dx^2} = -\lambda^2$$
(4.3)

Por separação das variáveis obtém-se:

$$\frac{d^2 X}{dx^2} + \lambda^2 X = 0$$
$$\frac{d\tau}{dt} + \alpha \lambda^2 \tau = 0$$

(4.4)

Cujas soluções nos dão:

$$\tau = C_3 \exp(-\alpha \lambda^2 t)$$

$$X = (C_1 \cos \lambda x + C_2 \sin \lambda x)$$
(4.5)

A solução geral tem a forma:

$$\theta = (C_1 \cos \lambda x + C_2 \sin \lambda x) e^{-\lambda^2 \alpha t}$$
(4.6)

Com a condição inicial e as condições de contorno:

a)
$$\theta = \theta_i = T_i - T_1$$
 para $t = 0, \ 0 \le x \le 2L$
b) $\theta = 0$ em $x = 0, \ t > 0$ (4.7)
c) $\theta = 0$ em $x = 2L, \ t > 0$

Da condição de contorno b) $C_1=0$ para $\tau > 0$, como C_2 não pode ser igual a zero, conclui-se que sin $(2L\lambda)=0$, ou:

$$\lambda = \frac{n\pi}{2L} \quad n = 1, 2, 3... \tag{4.8}$$

A forma final da equação é:

$$\theta = \sum_{n=1}^{\infty} C_n e^{-[n\pi/2L]^2 \alpha t} \sin \frac{n\pi x}{2L}$$
(4.9)

Esta equação poder ser reconhecida como a expansão da série de senos e da condição de contorno determina-se C_n

$$C_{n} = \frac{1}{L} \int_{0}^{2L} \theta_{i} \sin \frac{n\pi x}{2L} dx = \frac{4}{n\pi} \theta_{i} \quad n = 1, 2, 3... \quad (4.10)$$

A solução final fica:

$$\frac{\theta}{\theta_i} = \frac{T - T_1}{T_i - T_1} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{-[n\pi/2L]^2 \alpha t} \sin \frac{n\pi x}{2L} \quad n = 1, 2, 3... \quad (4.11)$$

Esta equação, mais tarde, será apresentada na forma gráfica para facilitar os cálculos

Na análise de transferência de calor, alguns corpos comportam-se como um "caroço", cuja temperatura interior permanece uniforme em todos os momentos do processo de transferência de calor. A temperatura desses corpos pode ser considerada como função só do tempo, t (T). A análise de transferência de calor que utiliza essa idealização é conhecida como análise de sistemas concentrados, o que proporciona grande simplificação de certo tipo de problemas de transferência de calor, sem por em causa a sua precisão.

Considere-se um corpo de forma arbitrária de massa m, volume V, área de superfície A_s , massa específica ϱ e calor específico c_p inicialmente a temperatura uniforme T_i . No tempo t=0, o corpo é colocado num meio à temperatura T_{∞} , e ocorre transferência de calor entre o corpo e o ambiente, com o coeficiente de transferência de calor h. Para discussão, vai-se supor que $T_{\infty} > T_i$, mas a análise é igualmente válida para o caso oposto. Assumindo-se que a análise de sistemas concentrados é aplicável, de modo que a temperatura seja uniforme no interior do corpo em todo o tempo e altere-se com o tempo, T=T(t).

O balanço dos fluxos de energia através da fronteira do sistema e as alterações internas que podem ocorrer podem ser expressas duma forma geral como:

$$\dot{E}_{in} + \dot{E}_g - \dot{E}_{out} = \dot{E}_s$$
Fronteira do sistema
$$E_{in} \longrightarrow E_g$$

$$E_s \longrightarrow E_{out}$$

Durante a consideração do balanço de energia as designações usadas para os fluxos de energia transferidos ou geradas são as seguintes:

E_{in}- é o fluxo de energia fornecida ao sistema;

E_{out}- é o fluxo de energia que sai do sistema;

E_g- é o fluxo de energia gerada no interior do sistema;

E_s - é o fluxo de energia que está a ser armazenada no sistema.

Se não houver geração de energia nem energia a sair do sistema a equação transforma-se em:

Assumindo que $\Theta \equiv T - T_{\infty}$ e que m = ϱV pode-se reescrever :

$$\frac{d\theta}{\theta} = -\frac{hA_s}{\rho VC_P} dt \qquad (4.14)$$

Separando as variáveis e integrando para as condições iniciais nas quais t=0 e T(0) = T_i tem-se:

$$\frac{\rho V C_P}{h A_s} \int_{\theta_i}^{\theta} \frac{d\theta}{\theta} = -\int_0^t dt \qquad (4.15)$$

Que resulta em:

$$\ln\frac{\theta}{\theta_i} = -\frac{hA_s}{\rho VC_P}t \qquad (4.16)$$

Aplicando a exponencial em ambas as partes da igualdade obtémse:

$$\frac{\theta}{\theta_i} = e^{-\frac{hA_s}{\rho V C_p}t} \qquad (4.17)$$
Ou por outra:

$$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = e^{-bt} \qquad (4.18)$$
Onde:

$$b = \frac{hA_s}{\rho V C_p} \qquad \left[\frac{1}{s}\right] \qquad (4.19)$$

b é um valor positivo, cuja

dimensão é o (tempo)-1. A

inversa de **b** tem unidades de

tempo (normalmente s), e é

chamada constante de tempo.

A Equação 4.18 é representada

na figura ao lado para

diferentes valores de b.

- Há duas observações que podem ser feitas a partir da figura anterior e da relação acima:
- A Equação 4.18 permite determinar a temperatura T(t) de um corpo em função do tempo t, ou, alternativamente, o tempo t necessário para a temperatura chegar a um valor especificado T(t).
- 2. A temperatura de um corpo aproxima-se da temperatura ambiente T_{∞} exponencialmente. A temperatura do corpo varia rapidamente no início, mas muito lentamente depois. Um valor elevado de **b** indica que o corpo vai atingir a temperatura ambiente num curto espaço de tempo.

Quanto maior o valor do expoente **b**, maior será a taxa da queda da temperatura. Note-se que **b** é proporcional à superfície, mas inversamente proporcional à massa e ao calor específico do corpo, o que não é surpreendente, pois demora-se mais a aquecer ou arrefecer uma massa maior, especialmente quando ela tem um elevado calor específico.

Uma vez que a temperatura **T(t)** no tempo **t** seja conhecida a partir da Equação 4.18, a taxa de transferência de calor por convecção entre o corpo e seu ambiente no tempo, pode ser determinada a partir de lei do arrefecimento de Newton como:

$$Q(t) = hA_{s}\left[T\left(t\right) - T_{\infty}\right]$$
(4.20)

O valor total da transferência de calor entre o corpo e o meio ambiente durante o intervalo de tempo **t=0** a **t** é simplesmente a alteração da quantidade de energia do corpo:

$$Q(t) = mC_{P}\left[T(t) - T_{i}\right]$$
(4.21)

O valor da transferência de calor atinge o seu limite máximo, quando o corpo atinge a temperatura ambiente T_{∞} Portanto, o máximo de transferência de calor entre o corpo e o meio ambiente é:

$$Q(t) = mC_P \left[T_{\infty} - T_i\right]$$
(4.22)

Pode-se também, obter esta equação substituindo a relação de T (t) da Equação 4.18 para o Q (t) na relação 4.21 e integrando a partir de t = 0 até t $\rightarrow \infty$.

A análise de sistemas concentrados certamente oferece uma grande comodidade na análise de transferência de calor, e, naturalmente, é necessário saber-se quando é apropriado usá-la. O primeiro passo para estabelecer um critério para a aplicabilidade da análise de sistemas concentrados é a definição de um comprimento característico como:

$$L_c = \frac{V}{A_s}$$

(4.23)

E o número de Biot como:

$$Bi = \frac{hL_c}{k}$$

(4.24)

Também pode ser expresso como:

ou

 $Bi = \frac{h}{k/L_c} \frac{\Delta T}{\Delta T} = \frac{\text{Convecção na superfície do corpo}}{\text{Condução no interior do corpo}}$

 $Bi = \frac{L_c/k}{1/h} = \frac{\text{Resistência do corpo à condução}}{\text{Resistência à convecção na superfície do corpo}}$

Quando um corpo sólido é aquecido por um fluido quente ao seu redor (como sendo uma batata cozida num forno), o calor é primeiro transferido por convecção ao corpo e posteriormente conduzido dentro do corpo. O número de Biot é a razão entre a resistência interna de um corpo a condução de calor, pela sua resistência externa à convecção de calor.

4.2.1 Validade do Método de AnáliseConcentrada

Um pequeno número de **Biot** representa uma pequena resistência à condução de calor e assim, pequenos gradientes de temperatura dentro do corpo.

A análise de sistemas concentrados pressupõe uma distribuição uniforme de temperatura por todo o corpo, que será o único caso em que a resistência térmica do corpo à condução de calor (a resistência de condução) é zero. Deste modo, a análise de sistemas concentrados é exacta quando Bi = 0 e aproximada quando Bi>0.

4.2.1 Validade do Método de Análise Concentrada

É geralmente aceite que a análise de sistemas concentrados é aplicável se:

 $Bi \le 0,1 \tag{4.25}$

Quando este critério é satisfeito, as temperaturas no interior do corpo em relação ao ambiente (ou seja, T - T_{∞}) permanecem na faixa de 5 por cento, mesmo para geometrias bem arredondadas como uma bola esférica.

No subcapítulo anterior considerou-se circunstâncias em que a variação da temperatura dentro do corpo foi desprezível, isto é, corpos que permanecem quase isotérmicos durante um processo. Os corpos relativamente pequenos de materiais altamente condutivos aproximam-se deste comportamento. Em geral, porém, a temperatura dentro de um corpo varia de ponto para ponto, bem como com o tempo.

Considere-se uma parede plana de espessura 2L, um cilindro longo de raio r_0 , e uma esfera de raio r_0 , inicialmente a temperatura uniforme T_i, como apresentado na figura. No tempo t = 0, cada geometria é colocada num meio de grandes dimensões que está a uma temperatura constante T_{∞} e mantida nesse meio durante t > 0.

A variação do perfil de temperatura ao longo do tempo na parede plana encontra-se ilustrada na figura. Quando a parede é exposta ao meio envolvente, $T_{\infty} < T_i$ em t=0, toda a parede encontra-se à sua temperatura inicial T_i.

A formulação de problemas para a determinação da distribuição de temperatura unidimensional transiente T(x, t) em uma parede resulta numa equação diferencial parcial, que pode ser resolvida usando técnicas de matemática avançada. A solução, no entanto, implica normalmente séries infinitas, que são complexas de se resolver. Portanto, são claras as motivações para apresentar a solução em forma de tabelas ou gráficos. No entanto, a solução envolve os parâmetros x, L, t, k, h, T_i , e T_{∞} , que são muitos para se fazer qualquer apresentação gráfica dos resultados práticos.

A fim de reduzir o número de parâmetros, adimensionaliza-se o problema através

da definição das seguintes grandezas adimensionais:

Temperatura adimensional
$$\theta(x,t) = \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}}$$
 (4.26)Distância do centro adimensional $X = \frac{x}{L}$ (4.27)Coeficiente de transferência de calor adimensional $Bi = \frac{hL}{k}$ (4.28)Tempo adimensional $\tau = \frac{\alpha t}{L^2}$ (4.29)

O número de Fourier no tempo **t** pode ser visto como a razão entre a taxa de calor conduzido e a taxa de calor armazenado nesse

instante.

4.3 Condução de Calor em regimeTransiente com Efeitos EspaciaisÉ de notar que o expoente da Equação 4.18 pode ser

expresso em termos dos Módulos de Biot e de Fourier se a relação (V/A) for considerada como dimensão característica, assim:

$$\frac{hA}{\rho VC_P}t = \frac{h}{\rho LC_P}t = \frac{hL}{k}\frac{k}{\rho C_P}\frac{t}{L^2} = Bi \cdot Fo \qquad (4.30)$$

O problema de condução de calor transiente unidimensional já descrito. pode ser resolvido com exatidão para qualquer das três geometrias, mas a solução envolve séries infinitas que são de difícil solução. Os termos nas soluções convergem rapidamente com o aumento do tempo e para $\tau > 0,2$, mantendo o primeiro termo e negligenciando os restantes da série, resulta um erro inferior a 2%. Geralmente o interesse está em soluções para tempos $\tau > 0,2$, assim é conveniente expressar a solução que usa este único termo como:

Para uma parede Plana:

$$\theta(x,t)_{Parede} = \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau} \cos(\lambda_1 x/L), \quad \tau > 0.2$$
(4.31)

Para um Cilindro

$$\theta(x,t)_{Cilindro} = \frac{T(r,t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau} J_o(\lambda_1 r/r_o), \quad \tau > 0,2$$
(4.32)

Para uma Esfera

$$\theta(x,t)_{Esfera} = \frac{T(r,t) - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau} \frac{sen(\lambda_1 r/r_o)}{\lambda_1 r/r_o}, \quad \tau > 0,2$$
(4.33)

Onde as constantes $A_1 e \lambda_1$ são funções só de **Biot** e os seus valores constam da Tabela 4.1

A função $J_{(0)}$ é a função de Bessel de ordem zero do primeiro tipo e os seus valores podem ser determinados da Tabela 4.2. É de notar que o $\cos(0) = J_0(0)=1$ e o limite de $\operatorname{sen}(x)/x$ também é 1. Estas relações simplificam as anteriores, dando origem às seguintes, para o caso do centro da parede plana, cilindro ou esfera:

Para o centro de uma parede Plana:

$$\theta_{0,Parede} = \frac{T_0 - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$$

(4.34)

Para o centro de um Cilindro:

$$\theta_{0,Cilindro} = \frac{T_0 - T_{\infty}}{T_i - T_{\infty}} = A_1 e^{-\lambda_1^2 \tau}$$
(4.35)

Para o centro de uma esfera:

$$\theta_{0,Esfera} = \frac{T_0 - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$$

(4.36)

Basta conhecer o número de Biot, as relações acima podem ser usadas para determinar a temperatura de qualquer ponto do corpo. A temperatura do corpo varia desde a temperatura inicial T_i até a temperatura do meio T_{∞} que é o fim do processo de condução em regime transiente. Dai, a quantidade máxima de calor que o corpo pode ganhar ou perder, (no caso de $T_i > T_{\infty}$) é a simples variação da energia que o corpo tinha, e é dada por:

$$Q_{\max} = mc_p \left(T_{\infty} - T_i\right) = \rho V c_p \left(T_{\infty} - T_i\right)$$
(4.37)

Tabela 4.1 Coeficientes usados na solução aproximada para o Regime Transiente Unidimensional (I)

Bi	Parede Plana		Cilir	ndro	Esfera		
	λ ₁	A ₁	λ ₁	A ₁	λ ₁	A ₁	
0,01	0,0998	1,0017	0,1412	1,0025	0,1730	1,0030	
0,02	0,1410	1,0033	0,1995	1,0050	0,2445	1,0060	
0,04	0,1987	1,0066	0,2814	1,0099	0,3450	1,0120	
0,06	0,2425	1,0098	0,3438	1,0148	0,4217	1,0179	
0,08	0,2791	1,0130	0,3960	1,0197	0,4860	1,0239	
0,1	0,3111	1,0161	0,4417	1,0246	0,5423	1,0298	
0,2	0,4328	1,0311	0,6170	1,0483	0,7593	1,0592	
0,3	0,5218	1,0450	0,7465	1,0712	0,9208	1,0880	
0,4	0,5932	1,0580	0,8516	1,0931	1,0528	1,1164	
0,5	0,6533	1,0701	0,9408	1,1143	1,1656	1,1441	
0,6	0,7051	1,0814	1,0184	1,1345	1,2644	1,1713	
0,7	0,7506	1,0918	1,0873	1,1539	1,3525	1,1978	
0,8	0,7910	1,1016	1,1490	1,1724	1,4320	1,2236	
0,9	0,8274	1,1107	1,2048	1,1902	1,5044	1,2488	
1,0	0,8603	1,1191	1,2558	1,2071	1,5708	1,2732	

Tabela 4.1 Coeficientes usados na solução aproximada para o Regime Transiente Unidimensional (II)

Bi	Parede Plana		Cilin	ndro	Esfera		
	λ ₁	A ₁	λ ₁	A ₁	λ ₁	A ₁	
2,0	1,0769	1,1785	1,5995	1,3384	2,0288	1,4793	
3,0	1,1925	1,2102	1,7887	1,4191	2,2889	1,6227	
4,0	1,2646	1,2287	1,9081	1,4698	2,4556	1,7202	
5,0	1,3138	1,2403	1,9898	1,5029	2,5704	1,7870	
6,0	1,3496	1,2479	2,0490	1,5253	2,6537	1,8338	
7,0	1,3766	1,2532	2,0937	1,5411	2,7165	1,8673	
8,0	1,3978	1,2570	2,1286	1,5526	2,7654	1,8920	
9,0	1,4149	1,2598	2,1566	1,5611	2,8044	1,9106	
10,0	1,4289	1,2620	2,1795	1,5677	2,8363	1,9249	
20,0	1,4961	1,2699	2,2880	1,5919	2,9857	1,9781	
30,0	1,5202	1,2717	2,3261	1,5973	3,0372	1,9898	
40,0	1,5325	1,2723	2,3455	1,5993	3,0632	1,9942	
50,0	1,5400	1,2727	2,3572	1,6002	3,0788	1,9962	
100,0	1,5552	1,2731	2,3809	1,6015	3,1102	1,9990	
00	1,5708	1,2732	2,4048	1,6021	3,1416	2,0000	

Tabela 4.2 Funções de Bessel de ordem zero e de primeira ordem do primeiro tipo

ξ	$J_o(\mathbf{\xi})$	$J_1(\boldsymbol{\xi})$
0,0	1,0000	0,0000
0,1	0,9975	0,0499
0,2	0,9900	0,0995
0,3	0,9776	0,1483
0,4	0,9604	0,1960
0,5	0,9385	0,2423
0,6	0,9120	0,2867
0,7	0,8812	0,3290
0,8	0,8463	0,3688
0,9	0,8075	0,4059
1,0	0,7652	0,4400
1,1	0,7196	0,4709
1,2	0,6711	0,4983
1,3	0,6201	0,5220
1,4	0,5669	0.5419

ξ	$J_o(\mathbf{\xi})$	$J_1(\boldsymbol{\xi})$
1,5	0,5118	0,5579
1,6	0,4554	0,5699
1,7	0,3980	0,5778
1,8	0,3400	0,5815
1,9	0,2818	0,5812
2,0	0,2239	0,5767
2,1	0,1666	0,5683
2,2	0,1104	0,5560
2,3	0,0555	0,5399
2,4	0,0025	0,5202
2,6	-0,0968	-0,4708
2,8	-0,1850	-0,4097
3,0	-0,2601	-0,3391
3,2	-0,3202	-0,2613

Os gráficos de temperatura transiente nas três figuras seguintes, para uma grande parede plana, um cilindro longo e uma esfera foram primeiramente apresentados pelo MP Heisler em 1947 e são chamados de cartas de Heisler. Eles foram completados em 1961 como gráficos de transferência de calor em regime transiente por H. Gröber. Há três gráficos associados a cada geometria: o primeiro gráfico serve para determinar a temperatura no centro da geometria num dado tempo t. O segundo para determinar a temperatura em outros locais ao mesmo tempo, em termos de T_o e o terceiro gráfico serve para determinar a quantidade total de calor transferido até ao tempo t. Estas cartas são válidas para τ>0,2.

Carta para placa plana infinita

Carta para cilindro longo

Carta para esfera

As fracções do calor transferido podem também ser determinadas das relações baseadas nas equações já discutidas:

Um sólido semi-infinito é um corpo idealizado que tem uma superfície plana e única e estende-se até ao infinito em todas as direcções. Esse corpo idealizado é usado para indicar que a alteração da temperatura na parte do corpo em que estamos interessados (região próxima à superfície) ocorre devido a condições térmicas em uma única superfície. A terra, por exemplo, pode ser considerada um meio semi-infinito em determinar a variação da temperatura próximo à superfície.

Esquema de um corpo semi-infinito

Considere-se um sólido semi-finito mantido a temperatura T_i . A temperatura da superfície é subitamente baixada e mantida a temperatura T_0 . Pretende-se encontrar uma expressão para a distribuição das temperaturas em função do tempo

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau}$$
(4.41)

As condições iniciais e de contorno são:

$$T(x,0) = T_i$$

$$T(0,\tau) = T_0 \quad para \ \tau > 0$$
(4.42)

Variação da temperatura 0.5 com a posição e o 0.4 0.3 tempo num sólido semi- $- \theta(x, t)$ 0.2 infinito inicialmente a $-T_{\infty}$ 0.1 $-T_{\infty}$ **T**_i submetido à T(x, t)E 0.05 convecção num 0.04 0.03 ambiente a \mathbf{T}_{∞} , com um 0.02 coeficiente de 0.01 transferência de calor 0 por convecção de **h**.

A solução exata do problema com recurso às Transformadas de Laplace é expressa como:

$$\frac{T(x,\tau) - T_i}{T_{\infty} - T_i} = erfc\left(\frac{x}{2\sqrt{\alpha\tau}}\right) - \exp\left(\frac{hx}{k} - \frac{h^2\alpha t}{k^2}\right) erfc\left(\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right)$$
(4.43)

Onde a função $erf(\xi)$ erro de Gauss é definida como:

$$erf\left(\xi\right) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\xi} e^{-\eta^2} d\eta$$

(4.44)

Apesar de sua aparência simples, a integral da equação anterior não pode ser realizada analiticamente. Portanto, é avaliada numericamente para diferentes valores, e os resultados estão listados na Tabela 4.3. Para o caso especial de $\mathbf{h} \rightarrow \infty$, a temperatura da superfície \mathbf{T}_{s} torna-se igual à temperatura do fluido \mathbf{T}_{∞} , e a Equação 4.43 reduz-se a:

$$\frac{T(x,\tau) - T_i}{T_s - T_i} = erfc\left(\frac{x}{2\sqrt{\alpha\tau}}\right)$$
(4.45)

O fluxo de calor transmitido para ou do ambiente pode-se calcular da Lei de Fourier

O fluxo de calor numa posição x é dado por:

$$Q_x = -kA\frac{\partial T}{\partial x}$$

Efectuando a derivação da equação 4.46 obtém-se:

$$\frac{\partial T}{\partial x} = (T_i - T_0) \frac{2}{\sqrt{\pi}} e^{-x^2/4\alpha\tau} \frac{\partial}{\partial x} \left(\frac{x}{2\sqrt{\alpha\tau}}\right) = \frac{T_i - T_0}{\sqrt{\pi\alpha\tau}} e^{-x^2/4\alpha\tau}$$
(4.4)

Na superfície o fluxo de calor é:

$$Q_0 = \frac{kA(T_o - T_i)}{\sqrt{\pi\alpha\tau}}$$
(4.48)

O calor na superfície é avaliado do gradiente de temperaturas em x = 0

Tabela 4.3 Erro da Função

لح	erfc(ξ)	ξ	erfc(ξ)	٤	erfc(ξ)	ξ	erfc(ξ)	ې	erfc(ξ)	¥	erfc(ξ)
0,00	1,00000	0,38	0,59100	0,76	0,28250	1,14	0,10690	1,52	0,03159	1,90	0,00721
0,02	0,97740	0,40	0,57160	0,78	0,27000	1,16	0,10090	1,54	0,02941	1,92	0,00662
0,04	0,95490	0,42	0,55250	0,80	0,25790	1,18	0,09516	1,56	0,02737	1,94	0,00608
0,06	0,93240	0,44	0,53380	0,82	0,24620	1,20	0,08969	1,58	0,02545	1,96	0,00557
0,08	0,90990	0,46	0,51530	0,84	0,23490	1,22	0,08447	1,60	0,02365	1,98	0,00511
0,10	0,88750	0,48	0,49730	0,86	0,22390	1,24	0,07950	1,62	0,02196	2,00	0,00468
0,12	0,86520	0,50	0,47950	0,88	0,21330	1,26	0,07476	1,64	0,02038	2,10	0,00298
0,14	0,84310	0,52	0,46210	0,90	0,20310	1,28	0,07027	1,66	0,01890	2,20	0,00186
0,16	0,82100	0,54	0,44510	0,92	0,19320	1,30	0,06599	1,68	0,01751	2,30	0,00114
0,18	0,79910	0,56	0,42840	0,94	0,18370	1,32	0,06194	1,70	0,01612	2,40	0,00069
0,20	0,77730	0,58	0,41210	0,96	0,17460	1,34	0,05809	1,72	0,01500	2,50	0,00041
0,22	0,75570	0,60	0,39610	0,98	0,16580	1,36	0,05444	1,74	0,01387	2,60	0,00024
0,24	0,73430	0,62	0,38060	1,00	0,15730	1,38	0,05098	1,76	0,01281	2,70	0,00013
0,26	0,71310	0,64	0,36540	1,02	0,14920	1,40	0,04772	1,78	0,01183	2,80	0,00008
0,28	0,69210	0,66	0,35060	1,04	0,14130	1,42	0,04462	1,80	0,01091	2,90	0,00004
0,30	0,67140	0,68	0,33620	1,06	0,13390	1,44	0,04170	1,82	0,01006	3,00	0,00002
0,32	0,65090	0,70	0,32220	1,08	0,12670	1,46	0,03895	1,84	0,00926	3,20	0,00001
0,34	0,63060	0,72	0,30860	1,10	0,11980	1,48	0,03635	1,86	0,00853	3,40	0,00000
0,36	0,61070	0,74	0,29530	1,12	0,11320	1,50	0,03390	1,88	0,00784	3,60	0,00000

As cartas de Heisler podem ser utilizadas para obter a distribuição de temperaturas numa placa infinita de espessura 2L, num cilindro longo, ou numa esfera .

Quando considera-se uma parede cujas dimensões de altura e profundidade não são tão grandes, quando comparadas com a espessura, ou um cilindro cujo comprimento não e muito grande quando comparado com o seu diâmetro, são necessárias coordenadas espaciais adicionais para especificar a temperatura.

É possível combinar soluções para sistemas unidimensionais de uma maneira directa para obtenção de soluções para sistemas multidimensionais. A barra infinita rectangular pode ser formada por duas placas infinitas de espessura $2L_1$ e $2L_2$. A equação diferencial para esta situação é:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau}$$

(4.49)

Para se obter uma solução pelo método de separação de variáveis deve se fazer:

$$T(x, z, \tau) = X(x)Z(z)\Theta(\tau)$$
(4.50)

Barra rectangular infinita

Em seguida mostra-se que a distribuição de temperaturas adimensional, pode ser expressa pelo produto da solução dos problemas das placas de espessura $2L_1 e 2L_{2:}$

$$\left(\frac{T-T_{\infty}}{T_{i}-T_{\infty}}\right)_{barra} = \left(\frac{T-T_{\infty}}{T_{i}-T_{\infty}}\right)_{2L_{1} \ placa} \cdot \left(\frac{T-T_{\infty}}{T_{i}-T_{\infty}}\right)_{2L_{2} \ placa}$$
(4.51)

Onde T_i e a temperatura inicial e T_∞ a temperatura ambiente

Para duas barras infinitas as equações diferenciais são:

$$\frac{\partial^2 T_1}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T_1}{\partial \tau}, \quad \frac{\partial^2 T_2}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T_2}{\partial \tau}$$
(4.52)

e as soluções produtos admitidas:

$$T_1 = T_1(x,\tau)$$
 $T_2 = T_2(z,\tau)$ (4.53)

A solução produto obtém-se de um simples produto das funções (T_1,T_2)

$$T(x,z,\tau) = T_1(x,\tau)T_2(z,\tau)$$
(4.54)

As derivadas apropriadas para a Equação 5.56 são obtidas da (5.60)

$$\frac{\partial^2 T}{\partial x^2} = T_2 \frac{\partial^2 T_1}{\partial x^2}, \quad \frac{\partial^2 T}{\partial z^2} = T_1 \frac{\partial^2 T_2}{\partial z^2}$$

$$\frac{\partial T}{\partial \tau} = T_1 \frac{\partial T_2}{\partial \tau} + T_2 \frac{\partial T_1}{\partial \tau}$$
(4.55)

Usando a Equação 4.55 obtém-se:

$$\frac{\partial T}{\partial \tau} = \alpha T_1 \frac{\partial^2 T_2}{\partial z^2} + \alpha T_2 \frac{\partial^2 T_1}{\partial x^2}$$
(4.56)

Substituindo as equações em (4.49) obtém-se:

$$T_2 \frac{\partial^2 T_1}{\partial x^2} + T_1 \frac{\partial^2 T_2}{\partial z^2} = \frac{1}{\alpha} \left(\alpha T_2 \frac{\partial^2 T_1}{\partial x^2} + \alpha T_1 \frac{\partial^2 T_2}{\partial z^2} \right)$$

(4.57)

A solução produto admitida na Equação 4.57 realmente

satisfaz a Equação diferencial original 4.49.

Da mesma forma a solução de um bloco tridimensional

pode ser dada pelo produto de três soluções para placas de

espessuras dos três lados dos blocos.

Um pequeno cilindro de raio \mathbf{r}_{o} e altura \boldsymbol{a} é a intersecção de um cilindro longo de raio \mathbf{r}_{o} e uma parede plana de espessura \boldsymbol{a} .

Se as propriedades forem assumidas constantes, pode ser demonstrado que a solução deste problema bidimensional pode ser expressa como:

$$\left(\frac{T_{(r,x,t)} - T_{\infty}}{T_{i} - T_{\infty}}\right)_{cilindro} = \left(\frac{T_{(x,t)} - T_{\infty}}{T_{i} - T_{\infty}}\right)_{parede} \cdot \left(\frac{T_{(r,t)} - T_{\infty}}{T_{i} - T_{\infty}}\right)_{cilindro}$$
(4.58)

Soluções multidimensionais, expressas como produto de soluções unidimensionais para corpos que estão inicialmente a uma temperatura uniforme Ti e são expostas à convecção em todas as superfícies num meio a T_{∞}

Soluções multidimensionais, expressas como produto de soluções unidimensionais para corpos que estão inicialmente a uma temperatura uniforme Ti e são expostas à convecção em todas as superfícies num meio a T_{∞}

