Geradores de Vapor

4° ano

Aula 21

21. Dimensionamento de caldeiras Flamotubulares

- Tópicos
 - Dimensionamento da Fornalha
 - Dimensionamento dos tubos de Convecção

Dimensionamento da Fornalha caldeiras Flamotubulares

Primeiramente faz-se um balanço estequiométrico da reacção do combustível com o ar, tomando em conta o excesso de ar para saber quais os produtos da reacção, admitindo que a combustão seja completa, conforme hipótese já mencionada.

Para o cálculo da descarga de combustível, determina-se-se um rendimento inicial pelas Equações de 20.6 à 20.16, e através das equações da perdas de energia, a descarga de combustível

das equações da perdas de energia, a descarga de combustível necessária.

Balanço estequiométrico

Para controlar o funcionamento óptimo de uma caldeira em vários regimes, é fundamental conhecer-se a quantidade de ar necessária para a combustão do combustível, a composição e a quantidade dos produtos de combustão. Estes valores podem ser obtidos a partir da análise das reações químicas dos elementos combustíveis do combustível.

A formação dos produtos de combustão e a quantidade de calor que se liberta na fornalha dependem da quantidade de ar disponível na câmara de combustão. A quantidade mínima de ar necessário para a combustão completa de um 1 kg ou de1 m³ de combustível, chama-se ar teoricamente necessário (ar estequiométrico) e designa-se por V^o_{ar} . A sua unidade é metros cúbicos de ar por quilograma de combustível líquido m^3N/kg_{comb} ou metros cúbicos de ar por metro cúbico de combustível gasoso m^3N/m^3_{comb} : m^3N refere-se a metro cúbico em condições normais (ou, também, em condições de referência); à pressão- p=101325 Pa e à temperatura - t=0°C (273,15 K).

4

Volume teórico de ar

Para combustível Gasoso:

$$V_{ar}^{\circ} = 0,0476 \left[0,5 \cdot CO + 0,5 \cdot H_2 + 1,5 \cdot H_2 S + \sum \left(m + \frac{n}{4} \right) \cdot C_m H_n - O_2 \right] \left[\frac{m^3 N}{m_{comb}^3} \right]$$
(21.1)

Onde:

m – são os moles de carbono nos gases hidrocarbonetos;

n – são os moles de hidrogénio nos gases hidrocarbonetos

Para combustível líquido:

$$V_{ar}^{\circ} = 0,0889 \left(C^{t} + 0,375 \cdot S^{t} \right) + 0,269 H^{t} - 0,0336 \cdot O^{t} \quad \left[\frac{m^{3} N}{\text{kg}_{comb}} \right]$$
 (21.2)

Coeficiente de excesso de ar

Para queimar completamente um combustível, é necessário fornecer na fornalha uma quantidade de ar maior que a teoricamente necessária (estequiométrica). Isto porque, caso haja na fornalha somente o ar teórico, sempre haverá um local do volume da fornalha com o ar em excesso e um com défice de ar, o último irá provocar a queima incompleta nesse local. Se houver na fornalha um grande excesso de ar haverá uma combustão completa, mas esta quantidade de ar em excesso diminuirá a temperatura na fornalha o que diminui o rendimento térmico do gerador.

O excesso de ar é caracterizado pelo coeficiente de excesso de ar - α que é calculado pela seguinte expressão:

Onde:

 α - coeficiente do excesso do ar;

Var - volume real do ar, em m³N/kg para combustíveis líquidos ou em m³N/Nm³ para combustíveis gasosos.

Coeficiente de excesso de ar

Conhecendo-se o valor necessário do coeficiente de excesso de ar na fornalha pode-se calcular a quantidade real de ar de: _ _ _ _

$$V_{ar} = \alpha V_{ar}^{\circ} = \left[\frac{m^3 N}{\text{kg}_{comb}}\right] \quad \text{ou} \quad V_{ar} = \alpha V_{ar}^{\circ} = \left[\frac{m^3 N}{m_{comb}^3}\right]$$
 (21.3)

Tabela 21.1 Excesso de ar para combustíveis líquidos e gasosos

Combustível	Tipo de Fornalha	Coeficiente de		
	ou	Excesso de Ar		
	Queimador	(α)		
	Queimador de baixa pressão	1,30-1,40		
Óleo combustível	Queimador multicombustível	1,05-1,20		
	Queimador de pulverização mecânica	1,20-1,25		
(Fuel Oil)	Queimador de pulverização mecânica com	1,05-1,15		
	vapor auxiliar			
Gás Natural	Queimador tipo registro	1,05-1,10		
Gás de Coque	Queimador multicombustível	1,07-1,12		
Gás do Alto-forno	Queimador de bocal inter-tubos	1,15-1,18		
Gás Liquefeito de Petróleo	Queimador tipo registro	1,05-1,10		

Volume dos gases biatómicos

Volume teórico

Para combustível Gasoso:

$$V_{RO}^{o} = 0,79 \cdot V_{ar}^{o} + 0,01 \cdot N^{t} \qquad \left[\frac{m^{3}N}{m_{comb}^{3}} \right]$$
 (21.4)

Para combustível Líquido:

$$V_{RO}^{o} = 0,79 \cdot V_{ar}^{o} + 0,008 \cdot N^{t} \quad \left[\frac{m^{3}N}{kg_{comb}} \right]$$
 (21.5)

Volume Real

Para combustível Gasoso:

$$V_{RO} = V_{RO}^{\circ} + (\alpha - 1) \cdot 0,79 \cdot V_{ar}^{\circ} \qquad \left| \frac{m^3 N}{m_{comb}^3} \right|$$
 (21.6)

Para combustível Líquido:

$$V_{RO} = V_{RO}^{\circ} + (\alpha - 1) \cdot 0,79 \cdot V_{ar}^{\circ} \quad \left| \frac{m^3 N}{kg_{comb}} \right|$$
 (21.7)

Volume dos gases triatómicos

Para combustível Gasoso:

$$V_{RO_2}^{\circ} = 0.01 \cdot \left[CO_2 + CO + H_2 S + \sum_{m} m(C_m H_n) \right] \left[\frac{m^3 N}{m_{comb}^3} \right]$$
(21.8)

Para combustível Líquido:

$$V_{RO_2}^{\circ} = 1,867 \cdot \left[C^t + 0,375 \cdot S^t \right] \left[\frac{m^3 N}{\text{kg}_{comb}} \right]$$
 (21.9)

Os gases triatómicos resultam da reacção entre elementos que se encontram no combustível e o ar, não dependendo, deste modo, da quantidade de ar que se introduz na fornalha. Sendo assim, para estes gases não existe distinção entre volume teórico e real.

Volume do vapor de água

Volume teórico

Para combustível Gasoso:

$$V_{H_2O}^{\circ} = 0.01 \cdot \left\{ H_2 S + H_2 + \sum \left[\left(\frac{n}{2} \right) C_m H_n \right] + 0.012 \cdot W^t \right\} + 0.0161 \cdot V_{ar}^{\circ} \quad \left[\frac{m^3 N}{m_{comb}^3} \right]$$
 (21.10)

Para combustível Líquido:

$$V_{H_2O}^{\circ} = 0.1116 \cdot H^t + 0.0124 \cdot S^t + 0.0161 \cdot V_{ar}^{o} \quad \left| \frac{m^3 N}{kg_{comb}} \right|$$
 (21.11)

Volume Real

Para combustível Gasoso:

$$V_{H_2O} = V_{H_2O}^{\circ} + 0.0161 \cdot (\alpha - 1) \cdot V_{ar}^{\circ} \qquad \left| \frac{m^3 N}{m_{angle}^3} \right| \qquad (21.12)$$

10

Para combustível Líquido:

$$V_{H_2O} = V_{H_2O}^{\circ} + 0,0161 \cdot (\alpha - 1) \cdot V_{ar}^{\circ} \quad \left[\frac{m^3 N}{kg_{comb}} \right]$$
 (21.13)

Volume dos gases de combustão

Volume do Oxigénio excedente

Para combustível Gasoso:

$$V_{O_2} = 0,21 \cdot (\alpha - 1) \cdot V_{ar}^{\circ} \qquad \left| \frac{m^3 N}{m^3} \right|$$
 (21.14)

Para combustível Líquido:

$$V_{O_2} = 0.21 \cdot (\alpha - 1) \cdot V_{ar}^{\circ} \quad \left[\frac{m^3 N}{\text{kg}_{comb}} \right]$$
 (21.15)

Volume Total dos gases de Escape

Para combustível Gasoso:

$$V_g = V_{RO} + V_{RO_2} + V_{H_{2O}} + V_{O_2} \qquad \left| \frac{m^3 N}{m_{comb}^3} \right| \qquad (21.16)$$

Para combustível Líquido:

$$V_g = V_{RO} + V_{RO_2} + V_{H_{2O}} + V_{O_2} \qquad \left| \frac{m^3 N}{\text{kg}_{anth}} \right| \qquad (21.17)$$

Fracções volúmicas

A fracção Volúmica dos Gases Triatómicos nos Gases de Combustão é dada por:

$$r_{R0_2} = \frac{V_{R0_2}}{V_g} \tag{21.18}$$

A fracção Volúmica real dos Gases Biatómicos nos Gases de Combustão é dada

por:

$$r_{R_2} = \frac{V_{R_2}}{V_g} \tag{21.19}$$

A fracção Volúmica da Água nos Gases de Combustão é dada por:

$$r_{H_2O} = \frac{V_{H_2O}}{V_g} \tag{21.20}$$

A fracção Volúmica do Oxigénio excedente nos Gases de Combustão é dada por: V_o

$$r_{O_2} = \frac{V_{O_2}}{V_g}$$

(21.21)

Poder calorífico inferior

O poder calorífico inferior, dependendo do estado físico do combustível, pode ser calculado com base nas seguintes fórmulas:

Para combustível líquido

$$Q_{i} = 4,187 \left[81 \cdot C^{t} + 300 \cdot H^{t} - 26 \left(O^{t} - S^{t} \right) - 6 \left(W^{t} + 9H^{t} \right) \right] = \left| \frac{kJ}{kg_{comb}} \right|$$
 (21.22)

Para combustível gasoso

$$Q_{i}^{t} = 108,3H_{2} + 126,8CO + 234,6H_{2}S + 359,3CH_{4} + 639,5C_{2}H_{6} + 915,4C_{3}H_{8} + 592,5C_{2}H_{4} + 1190,2C_{4}H_{10} + 1465,4C_{5}H_{12} + 862,7C_{3}H_{6} + 1138,7C_{4}H_{8}$$

$$\begin{bmatrix} kJ/m_{comb}^{3} \end{bmatrix}$$
(21.23)

Temperatura Adiabática da Chama

O desprendimento de calor proveniente da reação de combustão pode ser calculado conhecidos o Poder Calorífico do combustível, a fracção volúmica dos produtos de combustão e a entalpia dos produtos de combustão. Se for assumido que todo o calor gerado é transformado em entalpia dos produtos de combustão, sem nenhuma perda de calor por radiação ao ambiente externo (uma situação, na prática, impossível) ou perda de temperatura por dissociação, é possível calcular a Temperatura Adiabática de Chama como:

$$I_{g} = r_{RO_{2}}.(C\theta)_{RO_{2}} + r_{N_{2}}.(C\theta)_{N_{2}} + r_{H_{2}O}.(C\theta)_{H_{2}O} + r_{O_{2}}.(C\theta)_{O_{2}} \left[\frac{kJ}{m^{3}}\right]$$
(21.24)

Onde:

 $(C\Theta)_{ar}$ - entalpia específica do ar; $(C\Theta)_{RO2}$ - entalpia específica dos gases triatómicos; $(C\Theta)_{N2}$ - entalpia específica do nitrogénio; $(C\Theta)_{H2O}$ - entalpia específica do vapor de água; $(C\Theta)_{O2}$ - entalpia específica do oxigénio

A entalpia específica dos gases triatómicos secos assume-se que seja igual a entalpia do dióxido de carbono.

Temperatura Adiabática da Chama

A entalpia dos produtos de combustão também pode-se calcular da relação entre o calor introduzido na fornalha pela queima do combustível, aquecimento do ar do combustível e também pelo calor introduzido para atomizar o combustível, menos o calor de dissociação do combustível

$$I_{pc} = \frac{Q_i^t + T_{ar} \cdot c_{p_{ar}} \cdot \alpha \cdot V_{ar}^o + T_{comb} \cdot c_{p_{comb}} - q_{dis}}{V_{\varrho}} \left[\frac{kJ}{m^3} \right]$$
(21.25)

Onde:

 I_{pc} – Entalpia dos produtos de combustão k J/m^3

 T_{ar} – é a temperatura a que o ar é aquecido [°C]

 C_{par} – é o calor específico do ar [kJ/(kg °C)]

 α – $\acute{\mathrm{o}}$ o coeficiente de excesso de ar

 V_{ar} – volume teórico do ar [m³/kg_{comb}]

 T_{comb} — temperatura a que o combustível é aquecido [°C]

 C_{pcomb} - calor específico do combustível ar [kJ/(kg $^{\rm o}$ C)]

 V_g – volume dos gases de escape [m³/kg_{comb}] ou [m³/m³_{comb}]

Qⁱ– poder calorífico inferior do combustível [kJ/kg_{comb}] ou [kJ/m³_{comb}]

Temperatura Adiabática da Chama

A Temperatura Adiabática da Chama é determinada fazendo-se variar a temperatura na Fórmula 21.24 até que o valor da entalpia calculado por essa fórmula coincida com o valor calculado pela Fórmula 21.25

$$I_g \approx I_{pc} \left[\frac{kJ}{m^3} \right]$$
 (21.26)

Transferência de calor na Fornalha

Para simplificar os cálculos de transferência de calor no interior da fornalha, assume-se o seguinte:

- (1) Nos cálculos de transferência de calor para a fornalha numa primeira fase só é considerada a troca de calor por radiação.
- (2) A chama, a uma temperatura média $T_{\rm ch}$, troca calor por radiação com a superfície de aquecimento da fornalha. A temperatura adiabática (teórica) $T_{\rm ad}$ da chama é utilizada para calcular $T_{\rm ch}$.
- (3) A temperatura dos gases de combustão à saída fornalha T_{sai} =950 °C (TSGF) é utilizada como uma temperatura característica do projecto.
- (4) A superfície de absorção de calor da fornalha e a superfície emissora de calor da chama são assumidas como sendo paralelas uma à outra, com uma superfície de área de A.

17

O calor total absorvido pela água (ou vapor), a partir do gás de combustão de uma fornalha da caldeira é uma fracção, Φ , da diferença entre o calor total liberto, Q_f , e a entalpia dos gases de combustão que saem da fornalha, I_{sai} . A outra parte (l- Φ) é perdida devido à radiação e convecção a partir do exterior da fornalha. Assim, o calor absorvido, Q_{abs} , numa fornalha é:

$$Q_{abs} = \phi \cdot B\left(Q_f - I_{sai}^f\right) = \phi \cdot B \cdot \overline{VC_p}\left(T_{ad} - T_{sai}^f\right) \quad kW \qquad (21.27)$$

Onde:

 Φ – é o coeficiente de conservação de calor na fornalha

 Q_{ℓ} – é o calor introduzido na fornalha, kJ/kg $_{\mathrm{comb}}$

 $\vec{T_{ad}}$, T_{sai} - são as temperaturas adiabática e terminal absoluta dos produtos de combustão respectivamente, K:

 I_{sai} - é a entalpia terminal dos gases, kJ/kg_{comb};

 C_p – é o calor específico médio dos produtos de combustão, kJ/(m³NK);

 $V - \acute{e}$ o volume dos produtos de combustão, m³N/kg_{comb};

B – é o consumo de combustível, kg/s.

A fracção de calor retida pela água e vapor, Φ , é dada por:

$$\phi = 1 - \frac{q_6}{\eta_v + q_6}$$
 (21.28)

Onde $\eta_{\text{\tiny V}}$ é o rendimento térmico do gerador

Se VC_p for o calor específico médio dos produtos de combustão formados por 1 kg de combustível no intervalo $T_{ad} - T_{sai}$ daí:

$$\overline{VC_p} = \frac{Q_f - I_{sai}^f}{T_{ad} - T_{sai}^f} \quad kJ/kgK \quad ou \quad kJ/m^3K \quad (21.29)$$

Equação de Transferência de calor por Radiação

Para a transferência de calor por radiação, a fornalha e a chama são considerados dois planos paralelos com áreas infinitas. A partir da equação básica de transferência de calor por radiação, o fluxo de calor total radiante líquido, Q_r é

$$Q_r = \varepsilon_s \sigma A \left(T_{ch}^4 - T_{pa}^4 \right) \quad kW \tag{21.30}$$

Onde ε_s é a emissividade do sistema de planos paralelos chama-parede da fornalha e é dado por:

$$\varepsilon_{s} = \frac{1}{\frac{1}{\varepsilon_{h}} + \frac{1}{\varepsilon_{h}} - 1} = \frac{\varepsilon_{ch}/\varepsilon_{pa}}{1 - (1 - \varepsilon_{ch})(1 - \varepsilon_{pa})}$$
(21.31)

Onde T_{ch} , T_{pa} - são a temperatura da chama e da parede de água, respectivamente, K; σ - é a constante de Stefan-Boltzman 5,670 x 10⁻⁸ W/m²K⁴; ϵ_{ch} , ϵ_{pa} - são as emissividades da chama e da parede da fornalha.

20

Pode-se escrever que o calor que se troca por radiação com a parede de água é igual a perda da entalpia dos gases de combustão. Das Equações (21.27) e (21.30), obtem-se que:

$$Q_r = \phi \cdot B \cdot \overline{VC_p} \left(T_{ad} - T_{sai}^f \right) = \varepsilon_f \psi \sigma A \left(T_{ch}^4 - T_{pa}^4 \right) \quad [kW]$$
 (21.32)

$$\frac{\phi \cdot B \cdot \overline{VC_p}}{\varepsilon_f \psi \sigma A} \left(T_{ad} - T_{sai}^f \right) = \left(T_{ch}^4 - T_{pa}^4 \right) \tag{21.33}$$

Como $T_{ch} \gg T_{pa}$ pode-se desprezar T_{pa} . Sabendo que a temperatura da chama encontra-se na média entre a temperatura adiabática da chama e a temperatura de saída da fornalha, pode-se utilizar a temperatura média geométrica da seguinte forma:

$$T_{ch} = \sqrt{T_{ad} \cdot T_{sai}^f} \tag{21.34}$$

21

Substituindo na Equação 21.33 Obtém-se:

$$\frac{\phi \cdot B \cdot \overline{VC_p}}{\varepsilon_f \psi \sigma A} \left(T_{ad} - T_{sai}^f \right) = \left(\sqrt{T_{ad} \cdot T_{sai}^f} \right)^4 \tag{21.35}$$

011

$$\frac{\phi \cdot B \cdot \overline{VC_p}}{\varepsilon_s \psi \sigma A} \left(T_{ad} - T_{sai}^f \right) = \left(T_{ad} \cdot T_{sai}^f \right)^2$$
 (21.36)

Dividindo a expressão anterior por T_{ad} Obtém-se:

$$\frac{\phi \cdot B \cdot \overline{VC_p}}{\varepsilon_f \psi \sigma A T_{ad}^3} \left(1 - \frac{T_{sai}^f}{T_{ad}} \right) = \frac{\left(T_{ad} \cdot T_{sai}^f \right)^2}{T_{ad}^4}$$
(21.37)

Fazendo:

$$Ko = \frac{\phi \cdot B \cdot \overline{VC_p}}{\psi \sigma A T_{ad}^3} = const \quad e \quad \theta = \frac{T_{sai}^f}{T_{ad}}$$
 (21.38)

Sendo Ko o número de Konakov que é a relação entre a transferência de calor por convecção e a por radiação. Obtém-se:

$$\frac{Ko}{\varepsilon_f} (1 - \theta) = \theta^2 \quad ou \quad \theta^2 + \frac{Ko}{\varepsilon_f} \theta - \frac{Ko}{\varepsilon_f} = 0 \quad (21.39)$$

23

Que é uma equação do segundo grau.

Aplicando a fórmula resolvente obtém-se:

$$\theta_{1,2} = \frac{-\frac{Ko}{\varepsilon_f} \pm \sqrt{\left(\frac{Ko}{\varepsilon_f}\right)^2 + 4\frac{Ko}{\varepsilon_f}}}{2} \tag{21.40}$$

Como a razão das temperatura tem de ser positiva, então só considera-se a raiz positiva e obtém-se:

$$\theta = \frac{T_{sai}^f}{T_{ad}} = \frac{Ko}{2\varepsilon_f} \left(\sqrt{1 + 4\frac{\varepsilon_f}{Ko}} - 1 \right)$$
 (21.41)

Então a temperatura de saída da fornalha torna-se:

$$T_{sai}^{f} = \frac{Ko \cdot T_{ad}}{2\varepsilon_{f}} \left(\sqrt{1 + 4\frac{\varepsilon_{f}}{Ko}} - 1 \right) \quad [K]$$
 (21.42)

Tendo a temperatura de saída, para se determinar a área da fornalha a fórmula torna-se:

$$A = \frac{\phi \cdot B \cdot VC_p}{\varepsilon_f \psi \sigma T_{ad} \left(T_{sai}^f\right)^2} \left(1 - \frac{T_{sai}^f}{T_{ad}}\right) \quad \left[m^2\right]$$
(21.43)

$$A = \frac{\phi \cdot B \cdot \left(Q_f - I_{sai}^f\right)}{\varepsilon_f \psi \sigma \left(T_{ad} \cdot T_{sai}^f\right)^2} \quad \left[m^2\right]$$
(21.44)

Pode-se reorganizar a Equação 21.44 na forma que se segue para determinar a área de superfície requerida A

$$A = \frac{B \cdot q'}{\varepsilon_f \psi \sigma \left(T_{ad} \cdot T_{sai}^f\right)^2} \quad \left[m^2\right]$$
 (21.44a)

Onde q' é o calor absorvido pelas superfícies de aquecimento no forno por unidade de massa de combustível queimado,

$$q' = \phi \left(Q_f - I_{sai} \right) \quad kJ/kg_{comb} \tag{21.44b}$$

Com a área da fornalha calculada, dentro dos comprimentos de fornalhas padronizados, calcula-se o diâmetro da fornalha de:

$$D_f = \frac{A}{\pi \cdot L_f} \quad [m] \tag{21.45}$$

Onde:

Φ –Coeficiente de retenção de calor;

B – Consumo de combustível, kg/s;

 $\varepsilon_{\rm f}$ – Emissividade da fornalha;

Ko - Número de Konakov;

D_f - Diâmetro da fornalha, m;

 L_f – Comprimento da fornalha, m;

A -área de troca de calor da fornalha, m^2 ;

 Ψ – Factor de eficiência térmica da fornalha;

 σ – Constante de Boltzman, 5,670 x 10⁻⁸ W/m²K⁴ ou 5,670 x 10⁻¹¹ kW/m²K⁴;

 C_p – Calor específico médio dos produtos de combustão, kJ/(m³NK);

V – Volume dos produtos de combustão, m³N/kg_{comb}.

27

Factores de Incrustações e de Eficiência Térmica para a fornalha

A troca de calor por radiação tem lugar entre a chama a alta temperatura e a superfície mais fria da parede da fornalha. O coeficiente de transferência de calor no exterior da fornalha é de uma magnitude maior do que do lado interno da mesma.

Quando a superfície interna da fornalha está limpa, a temperatura da superfície é próxima da do fluido de trabalho, e a radiação que incide em toda a fornalha é absorvida pelo fluido. Na prática, a superfície interna da fornalha é geralmente coberta por depósitos de cinza (incrustações). Assim, é utilizado um coeficiente para calcular a absorção real de calor de radiação. Pelo facto da fornalha ser constituída por um único tubo cilíndrico, então considera-se que a sua eficiência térmica só é afectada pelos factores de incrustação.

Eficiência Térmica

Se uma fornalha limpa for um corpo negro perfeito, isto é toda a radiação que sobre ele incide é absorvida. Este valor é dado por $A\mathcal{E}_f\sigma_o T^4_{ch}$. No caso de contaminação, a fornalha deixa de ser um corpo negro. Então ela absorve apenas uma fracção, ξ , da radiação incidente. Assim, a real absorção de radiação pela fornalha é igual a $\xi A\mathcal{E}_f\sigma_o T^4_{ch}$, Assim pode-se definir o coeficiente de eficiência térmica Ψ como a fracção da radiação incidente absorvida pela fornalha:

$$\Psi = \zeta \qquad (21.46)$$

Tabela 21.2 Coeficiente de deposição para diferentes combustíveis

Tipo de combustível	Coeficiente de deposição (ξ)				
Combustível gasoso.	0,65-0,7				
Fuel oil ou Mazute.	0,55 -0,6				
Antracite, carvão de pedra, lenhites e turfa.	0,45 0,55				

Emissividade da Fornalha

Tomando em conta a eficiência térmica, então a emissividade da fornalha calcula-se de:

$$\varepsilon_f = \frac{\varepsilon_{ch}}{\varepsilon_{ch} + (1 - \varepsilon_{ch})\psi} \tag{21.47}$$

As chamas podem ser luminosas ou não luminosas. A chama dos gases triatómicos é

não luminosa. A sua absorção e radiação estão na região de comprimento de onda

Onde:

 ϵ_{ch} – é a emissividade da chama Ψ – é a eficiência térmica

partículas de fuligem.

infravermelho. Portanto, a chama dos gases triatómicos é transparente. As partículas de fuligem tornam a chama luminosa. Próximo da zona do queimador de uma caldeira de queima de óleo pesado, a chama é luminosa devido à presença de

A presença de partículas sólidas na chama de uma fornalha de combustível pulverizado introduz complexidade adicional devido à presença de dispersão pelos sólidos. Para os combustíveis sólidos, a emissividade da chama é calculada pela equação

$$\varepsilon_{ch} = 1 - e^{-kPS} \tag{21.48a}$$

Onde que k é o coeficiente de absorção radiante na fornalha (l/mMPa); P é a pressão dos gases na fornalha (MPa), e S é a espessura efectiva da camada radiante (m) ou comprimento médio do feixe.

A radiação da chama é absorvida pelos gases triatómicos $(k_y r)$, partículas de cinzas $(k_h \mu_h)$ e partículas de combustível sólido em combustão $(l0c_1c_2)$. Assim, o coeficiente combinado de absorção e radiante, k, é calculado adicionando estes termos:

$$k = k_{y}r + k_{h}\mu_{h} + 10c_{1}c_{2}$$
 (21.49a)

em que $k_h \mu_h$ é a concentração de partículas de cinzas na fornalha, kg/kg.

Neste caso, c_1 e c_2 são determinados pelo tipo de combustível e pelo método de queima, respectivamente. Para a antracite, c_1 = 1. Para o carvão betuminoso, linhite, turfa, xisto betuminoso e a madeira c_1 = 0,5. Para uma caldeira de queima por chama (Combustível pulverizado/óleo), c_2 = 0,1. Para caldeira com grelha mecânica c_2 = 0,03. O coeficiente de absorção radiante devido aos gases triatómicos (k_y) é de calculado pela equação (Lin, 1991, p. 403)

$$k_{y} = \left(\frac{7.8 + 16r_{H_{2}O}}{3.16\sqrt{rPS}} - 1\right) \left(1 - 0.37 \frac{T_{sai}^{f}}{1000}\right) \left[1/(m \cdot MPa)\right]$$
 (21.50a)

Onde:

 T_{sai} – é a temperatura absoluta dos gases de combustão na saída da fornalha;

 $S - \acute{e}$ a espessura efectiva da camada radiante;

P – é a pressão na fornalha;

 $r - \acute{e}$ a fracção dos gases triatómicos $r=r_{RO2}+r_{H2O}$.

r_{H2O} – é a fracção de água

O coeficiente de absorção radiante devido às partículas de cinzas (k_h) é calculado pela expressão:

$$k_h = \frac{5990}{\left(T_{sai}^f \cdot d_h\right)^{\frac{2}{3}}} \left[1/(m \cdot MPa)\right]$$
 (21.51a)

em que d_h = diâmetro das partículas de cinzas, μ ,m

Para moinho de bolas, $d_h = 13 \mu m$

Para moinho de esferas e moinho de martelos, $d_h = 13 \mu m$

Para caldeira com grelha mecânica, $d_h = 20 \mu m$

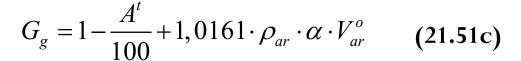
A concentração adimensional das cinzas nos produtos de combustão determina-se como: $a \quad A^t$

$$\mu_{cin} = \frac{a_{arr}A^t}{100 \cdot G_{\sigma}}$$
 (21.51b)

Onde:

a_{arr} é a fracção de cinzas arrastadas pelos gases.

 G_g é a razão entre a massa dos produtos de combustão (kg de gás) e a massa de combustível (kg de combustível) que calcula-se pela expressão:



Sendo:

 Q_{ar}

 ϱ_{ar} - a massa específica do ar em kg/m³

α - o coeficiente de excesso de ar

 V_{ar}^{o} - o volume teórico do ar m³/kg_{comb} ou m³/m³_{comb}

Tabela 21.2a Valores típicos da fracção de cinzas arrastadas $a_{\rm arr}$

Tipo de fornalha	Com grelha fixa e alimentação manual			Com grelha fixa e alimentador pneumático			Com grelha de cadeia de percurso directo		Com grelha de cadeia de percurso inverso		Fornalhas com extracção de cinzas líquidas			
Tipo de combustível	Lenhite	Carvão mineral	Antracite	Lenhite	Carvão mineral	Antracite	Lenhite	Carvão mineral	Lenhite	Carvão mineral	Lenhite	Carvão mineral	Antracite	Turfa fresada
Fracção de cinzas rrastadas a _{rr}	0,2	0,15	0,15	0,12	0,1	0,1	0,1-0,2	0,1-0,2	0,1-0,2	0,08-0,2	0,2-0,3	0,2	0,2	0,15

Prof. Doutor Eng° Jorge

Emissividade de Combustível Líquidos e Gasosos

$$\varepsilon_{ch} = ma_l + (1 - m)a_{nl} \qquad (21.48)$$

Onde:

 a_1 - é a emissividade da parte luminosa da chama;

 $a_{\rm nl}$ – é a emissividade da parte não luminosa da chama;

m – representa o grau de luminosidade da chama, depende da tensão térmica volumétrica na fornalha e do tipo de combustível.

Tabela 21.3 Coeficiente da fracção da luminosidade da chama

Tipo da chama					
Combustível gasoso sob $q_v \le 400 \text{ kW/m}^3$	0,1				
Combustível gasoso sob $q_v > 2100 \text{kW/m}^3$					
Combustível líquido sob $q_v \le 400 \text{ kW/m}^3$	0,55				
Combustível líquido sob $q_v > 1000 \text{ kW/m}^3$	1,0				

Emissividade de Combustível Líquidos e Gasosos

A emissividade da parte não luminosa da chama calcula-se de:

$$a_{nl} = 1 - e^{-k_{ynl}rPS} ag{21.49}$$

A emissividade da parte luminosa da chama calcula-se de:

$$a_l = 1 - e^{-(k_{yl}r + k_c)PS} (21.50)$$

Onde k_y , onde é o coeficiente de absorção de radiação, devido aos gases tri-atómicos, 1/mMPa, r é a concentração volumétrica dos gases tri-atómicos, P é a pressão na fornalha 0,1 Mpa, e S é o comprimento do feixe médio (m).

Emissividade de Combustível Líquidos e Gasosos

 k_c – é o coeficiente de absorção de radiação pelas partículas negras da combustão e é dado por:

$$k_c = 0.032(2-\alpha)\left(1.6\frac{T_{sai}^f}{1000} - 0.5\right)\frac{C^t}{H^t}$$
 (21.51)

Onde:

α- excesso de ar na fornalha;

 T_{sai} - temperatura do gás à saída da fornalha;

C^t - fracção de carbono no combustível, em massa de trabalho;

Ht - fração de hidrogênio no combustível, em massa de trabalho.

Na queima de combustível gasoso a razão entre o teor de Carbono e o de Hidrogénio calcula-se pela expressão:

$$\frac{C^{t}}{H^{t}} = 0.12 \sum_{n} \frac{m}{n} C_{m} H_{n}$$
 (21.52)

Emissividade de Combustível Líquidos e Gasosos

O coeficiente de absorção de radiação, devido aos gases tri-atómicos (k_y) é calculado pelas equações:

•Para chamas luminosas

$$k_{yl} = 1.6 \times 10^{-3} T_{sai}^{f} - 0.5 \left[1/(m \cdot MPa) \right]$$
 (21.53)

•Para chamas não luminosas:

$$k_{ynl} = \left(\frac{7.8 + 16r_{H_2O}}{3.16\sqrt{rPS}} - 1\right) \left(1 - 0.37 \frac{T_{sai}^f}{1000}\right) \left[1/(m \cdot MPa)\right]$$
 (21.54)

Onde:

 $T_{sai}-\acute{e}$ a temperatura absoluta dos gases de combustão na saída da fornalha;

S – é a espessura efectiva da camada radiante;

P – é a pressão na fornalha;

 $r - \acute{e}$ a fracção dos gases triatómicos $r = r_{RO2} + r_{H2O}$.

Tamanho efectivo do feixe de radiação

Tabela 21.4 Espessura da camada de radiação efectiva para geometrias standart

Tipo de Volume de Gás	Comprimento médio do feixe, S
Volume entre dois planos finitos	1,8 x distância entre as placas
Cilindro (comprimento infinito) radiação para a parede	0,95 x diâmetro
Cilindro (diâmetro=altura) radiação para o centro da base	0,71x diâmetro
Cilindro (diâmetro=altura) radiação para toda a superfície	0,60 x diâmetro
Cubo, radiação para qualquer face	0,60 x aresta
Volume envolvendo feixes de tubos infinitos. radiação para um tubo	
Arranjo em triângulo equilátero passo = 2 x diâmetro	3,0 x (passo-diâmetro)
Arranjo em triângulo equilátero passo = 2 x diâmetro	3,5 x (passo-diâmetro)
Arranjo quadrangular	3,8 x (passo-diâmetro)

O calor na fornalha é transmitido para as paredes da mesma por radiação e por convecção. Tendo sido calculado o diâmetro da fornalha pode-se então calcular as parcelas de calor transferidas por radiação e por convecção dentro da fornalha:

$$Q_{abs} = \phi \cdot B\left(Q_f - I_{sai}^f\right) = Q_r + Q_{conv} \quad [kW]$$
(21.55)

$$\phi \cdot B(Q_f - I_{sai}^f) = \varepsilon_f \sigma A(T_{ch}^4 - T_{pa}^4) + h_{conv} A(T_{ch} - T_{pa}) \quad [kW]$$

Onde:

 Q_f – $\acute{\mathrm{e}}$ o calor transmitido à agua e ao vapor dentro da fornalha, kW;

 ε_f – é a emissividade da fornalha;

 σ – é a constante de Boltzman, 5,670 x 10⁻¹¹ kW/m²K⁴;

 $A - \acute{e}$ a área da fornalha, m^2 ;

 h_{conv} – é o coeficiente de transferência de calor por convecção no interior da fornalha, $W/(m^{2o}K)$;

 T_{pa} e T_{ch} – são as temperaturas absolutas da parede e da chama respectivamente, K.

Tendo em consideração que a ebulição nucleada é o melhor regime de ebulição, (ver Figura 21.1) porque neste regime podem ser atingidas altas taxas de transferência de calor, com valores relativamente pequenos de excesso de temperatura $\Delta T_{\rm excess}$, geralmente abaixo de 30 °C para a água. A temperatura da parede da fornalha é um dado que se assume, tendo em conta o pressuposto atrás mencionado. Sendo assim razoável admitir-se que:

$$T_{pa} = T_{vs} + \Delta t_{excess} \qquad (21.56)$$

Sendo:

$$\Delta t_{\rm excess} = 20-25 \, {\rm ^{o}C}$$

42

T_{pa} – temperatura da parede;

 T_{vs} — temperatura de saturação do vapor;

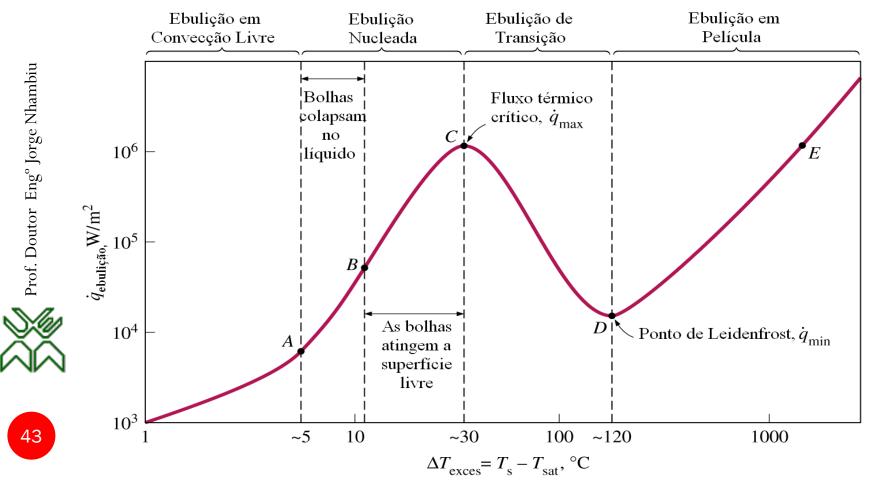


Figura 21.1 Curva dos Regimes de Ebulição

O coeficiente de transferência de calor por convecção h_{conv}, utilizado para o cálculo da transferência de calor por convecção dentro da fornalha, calcula-se pela expressão de Dittus-Boelter, válida para os seguintes limites de aplicação:

$$h_{conv} = 0.023 \frac{k_g}{D_f} \text{Re}^{0.8} \text{Pr}^{0.4}$$
 (21.57)

O coeficiente de transferência de calor para o caso de escoamento laminar no interior de tubos, é calculado pela seguinte expressão:

$$h_{conv} = \frac{0,0668 (D_f / L_f) \text{Re} \cdot \text{Pr}}{1 + 0,04 [(D_f / L_f) \text{Re} \cdot \text{Pr}]^{2/3}}$$
(21.58)

Onde:

 h_{conv} – é o coeficiente de transferência de calor por convecção no interior da fornalha, $kW/m^2 {\circ} C$

D_f – Diâmetro da fornalha, m;

L_f – comprimento da fornalha, m;

Re – Número de Reynolds

Pr – Número de Prandtl

 k_g- É o coeficiente condutividade térmica à temperatura média do fluxo do gás, kW/m°C.

A velocidade média de fluxo de gases dentro da fornalha, usada no cálculos do número de Reynolds (Re) obtém-se de:

$$w_g = \frac{BV_g(t+273)}{A_g 273} \quad m/s$$
 (21.59)

$$Re = \frac{w_g \cdot D_f}{v_g} \tag{21.60}$$

$$\Pr = \frac{v_g c_p \rho}{k_g} \tag{21.61}$$

Sendo:

k_g- é a condutividade térmica à temperatura média do fluxo do gás,

kW/m°C;

 v_g – é a viscosidade cinemática, à temperatura média do fluxo do gás, m²/s;

D_f - diâmetro interno da fornalha, m;

w_g – é a velocidade do fluxo de gás, m/s;

Re – Número de Reynolds

Pr – Número de Prandtl

Ag – secção de passagem dos gases m²

t – temperatura média dos gases na fornalha °C

c_p – calor específico dos gases kJ/kg·°C

O comprimento da Fornalha L_f é o mesmo comprimento dos tubos de convecção Lc. O que se pretende neste cálculo é conhecer a área total de transferência de calor para saber quantos tubos são necessários para a segunda passagem da caldeira.

Após a câmara de reversão traseira, todo o calor trocado na caldeira será através dos feixes de tubos e o mecanismo de transferência de calor será, predominante, a convecção.

A transferência de calor por quilograma de combustível queimado é determinada, dividindo o valor da transferência de calor pela taxa de queima de combustível:

$$Q = \frac{UA\Delta t}{B_{cal}} \left[\frac{kJ}{kg_{comb}} ou \frac{kJ}{m_{comb}^3} \right]$$
(21.62)

Onde:

 $Q-\acute{e}$ a quantidade de calor transferido por convecção por cada quilograma de combustível queimado, kJ/kg ou kJ/m³;

47

A - área de transferência de calor, m²;

U − é o coeficiente global de transferência de calor, kW/m²°C;

 Δt – é a diferença de temperatura média entre os gases e fluido de trabalho, °C;

B - consumo de combustível, kg/s ou m³/s;

Para os tubos de convecção o coeficiente de depósito de cinzas ε é usado para tomar em conta a influência de depósitos de cinzas na transferência de calor e é determinado por:

$$\varepsilon = \frac{1}{U} - \frac{1}{U_c}$$
 (21.63)

 $U = \frac{1}{\frac{1}{h_1} + \varepsilon + \frac{1}{h_2}}$ (21.64)

Onde:

U − é o coeficiente de transferência de calor dos tubos sujos, kW/(m² °C);

U_o - coeficiente de transferência de calor dos tubos limpos, kW/(m² °C).

Então o coeficiente global de Transferência de calor transforma-se em:

ε – é o coeficiente de deposição de cinzas, m²°C/W

h₁ – é o coeficiente total de transferência de calor para o lado interno do tubo, W/(m² °C)

 h_2 – é o coeficiente total de transferência de calor para o lado externo do tubo, W/(m^2 °C).

Nom interior dos tubos convectivos passa gás e no seu exterior encontra-se água saturada. Uma vez que o fluido fora dos tubos é água e o coeficiente de transferência de calor do lado da água é muito maior do que do lado dos gases de combustão, o termo $1/h_2$ da Equação 21.64 é muito pequeno e pode ser desprezado, então a Equação 21.64 simplifica-se e torna-se:

$$U = \frac{h_1}{1 + \varepsilon h_1} \quad \left[\frac{kW}{m^2 \circ C} \right] \quad (21.65)$$

49

Na Tabela 21.4 Apresentam-se valores típicos do coeficiente de deposição de cinzas para combustíveis gasosos e líquidos.

Tabela 21.4 Coeficiente de deposição de cinzas ε para tubos lisos durante a queima do combustíveis líquido ou gasoso.

Combustível	ε m ²⁰ C/W
Mazute	0,015
Gás natural	0,005
Gás de coque e do alto forno	0,003

O coeficiente total de transferência de calor da parede do lado do gás h_1 , consiste da soma entre os coeficientes de transferência de calor por convecção, h_{conv} , e do coeficiente de transferência de calor por radiação, h_{rad} dos gases.

$$h_1 = h_{conv} + h_{rad} \quad W/(m^2 {}^{\circ}C)$$
 (21.66)

O coeficiente de transferência de calor por convecção h_{conv} é calculado usando a seguinte equação:

$$h_{conv} = 0.023C_c \frac{k}{d_{eq}} \text{Re}^{0.8} P_r^{0.4}$$
 (21.67)

Onde:

 d_{eq} - é o diâmetro interno equivalente dos tubos de convecção;

 $k-\acute{e}$ o coeficiente de condutibilidade térmica dos produtos de combustão

Re – o número de Reynolds dos produtos de combustão $C_{\rm c}$ é o factor de correcção devido a influência da região de entrada, que se retira da Figura 21.2, se L/d > 50, então $C_{\rm c}=1$.

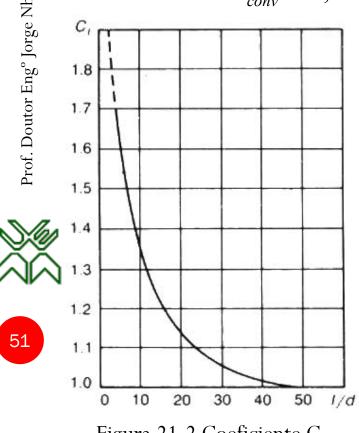


Figura 21.2 Coeficiente C_c

O coeficiente de transferência de calor por radiação é determinado de:

$$h_{ra} = \sigma \frac{\varepsilon_{cinz} + 1}{2} \varepsilon_g T_g^3 \frac{1 - \left(\frac{T_{pa}}{T_g}\right)^{3,6}}{1 - \left(\frac{T_{pa}}{T_g}\right)}$$
(21.68)

Onde:

h_{ra} – coeficiente de transferência de calor por radiação, W/m²K

 ε_{cinz} – é a emissividade das cinzas depositadas na superfície interna dos tubos;

 $(1+\epsilon_{cinz})/2$ - valor médio entre a emissividade das cinzas e a emissividade absoluta que é usado para compensar a reflexão e a absorção múltiplas nos tubos ($\epsilon_{cinz}=0.8$);

 σ - constante de Boltzman = 5,670 x 10⁻¹¹, kW/m² K⁴;

 $\epsilon_{\rm g}$ - emissividade do gás de combustão à temperatura Tg;

 $T_{_{g}}$ - temperatura dos gases de combustão, K;

 T_{pa}° - temperatura da superfície interior dos tubos, K.

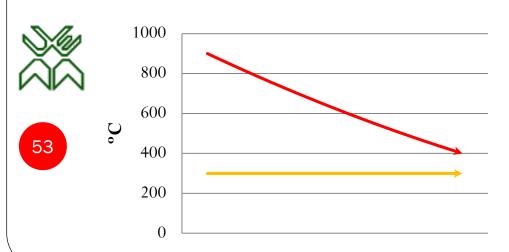
Temperatura Média Logarítmica

A diferença de temperatura média para o fluxo de gases que circula no interior dos tubos é é expressa pela equação seguinte, que também é chamada diferença média logarítmica de temperatura:

$$\Delta t = \frac{\Delta t_{\text{max}} - \Delta t_{\text{min}}}{\ln \frac{\Delta t_{\text{max}}}{\Delta t_{\text{min}}}}$$
(21.69)

Onde:

 Δt_{max} - maior diferença de temperatura na entrada ou na saída da superfície de aquecimento, °C; Δt_{min} - menor diferença de temperatura à entrada ou à saída da superfície de aquecimento, °C.



Recomenda-se:

Temperatura à saída da fornalha 950°C; Temperatura à saída da segunda passagem 330°C;

Temperatura à saída da segunda passagem 50°C acima da temperatura do vapor.

Área dos tubos de Convecção

Á área total dos tubos de convecção por cada passagem é determinada pela seguinte expressão:

$$A = N \cdot \pi \cdot d_c \cdot L_c \quad \boxed{m^2} \tag{21.70}$$

Onde:

N – é o número de tubos por cada passagem;

 d_c – é o diâmetro interno dos tubos de cada passagem, m;

L_c – é o comprimento dos tubos de convecção, m.

