Marcha de Cálculo de Fornalhas Flamotubulares

Passo	Parâmetro	Símb	Unid	Equação	Valor
1	Cálculo das perdas	q_i	%	Eq. (20.6) à Eq. (20.17)	
2	Cálculo do rendimento térmico	$\eta_{\scriptscriptstyle \mathcal{V}}$	%	Eq. (20.3b)	
3	Cálculo estequiométrico	V_i	$m^3/kg-m^3/m^3$	Eq. (21.1) à Eq. (21.17)	
4	Temperatura do ar quente	T_{aq}	$^{\circ}C$	Dado	
5	Entalpia do ar quente	I_{aq}	kJ/Kg-kJ/m³	Do cálculo das entalpias	
6	Calor trazido para a fornalha pelo ar	Qai	kJ/Kg-kJ/m³	β'apIha+Δαpul)Ico	
7	Calor total trazido para a fornalha por unidade de comb.	Q_f	kJ/Kg-kJ/m³	Eq, (20.5)	
8	Temperatura adiabática de chama	T_{ad}	K	Do cálculo das entalpias	
9	Temperatura de saída do gás da fornalha	Tsai	K	Assumido	1223.15
10	Entalpia do gás à saída da fornalha	Isai	kJ/Kg-kJ/m³	Do cálculo das entalpias	
11	Calor específico médio dos produtos da combustão	ν̈́Ĉp	kJ/Kg°C	Eq.(21.29)	
12	Fracção volúmica do vapor de água	r _{H2O}	m^3/m^3	Do cálculo estequiométrico	
13	Fracção volúmica dos gases triatómicos	r _{RO2}	m^3/m^3	Do cálculo estequiométrico	
14	Fracção volúmica somatória dos gases triatómicos	r	m^3/m^3	r=r _{H2O} +rR _{O2}	
15	Pressão na fornalha	P	Мра		0.1
16	Coeficiente de absorção radiante dos gases triatómicos	K_y	1/(m.Mpa)	Eq. (21.53) e Eq. (21.54)	
17	Coeficiente de absorção radiante das partículas de cinza	K_c	1/(m.Mpa)	Eq. (21.51) e Eq. (21.52)	
18	Emissividade da parte não luminosa	a_{nl}		Eq. (21.49)	
19	Emissividade da parte luminosa	a_l		Eq. (21.50)	
20	Tamanho efectivo do feixe de radiação	S	m	Tabela 21.4	

21	Emissividade da chama	$arepsilon_{ch}$		Eq. (21.48) ou Eq. (21.48a)
22	Coeficiente de deposição na fornalha	ζ		(Tabela 21.2)
23	Eficiência térmica da parede de água	Ψ		Eq. (21.46)
24	Emissividade da fornalha	\mathcal{E}_f		Eq.(21.47)
25	Coeficiente de retenção de calor	ф		Cálculo do balanço
26	Consumo de combustível	В	Kg/s	Cálculo do balanço
27	Calor absorvido na fornalha	q	kJ/Kg-kJ/m³	φ(Q _f -I _{sai})
28	Área da Fornalha	A	m^2	Eq. (21.44)
29	Diâmetro da fornalha	D_f	m	Tabela 20.1
30	Comprovar a temperatura de saída da forbalha	T`sai	K	Eq (21.42) Tsai - T`sai ≤100 K
31	Calor liberto por unidade de volume na fornalha	q_{v}	kW/m³	BQ _f /V _{tot}
32	Calor liberto por unidade de área da fornalha	q_F	MW/m^2	BQ _f /Fsec (verificar Tabela 20.2)
33	Velocidade dos gases na fornalha	w_g	m/s	Eq (21.59)
34	Número de Reynolds	R_e		Eq (21.60)
35	Número de Prandtl	P_r		Eq (21.61) ou Tabela 16.4
36	Coeficiente de transferência de calor por convecção	h_{conv}	kW/m²K	Eq (21.57) ou Eq (21.58)
37	Temperatura da parede da fornalha	T_{pa}	K	Eq. (21.56)
38	Temperatura da Chama	T_{ch}	K	Eq. (21.34)
39	Calor transferido por radiação na fornalha	Q_r	kW	Eq. (21.55)
40	Calor transferido por convecção na fornalha	Qconv	kW	Eq. (21.55)
41	Parcela transferida por radiação na fornalha	%Qr	%	Q _r /φ(Q _f -I _{sai})
42	Parcela transferida por convecção na fornalha	$\%Q_{conv}$	%	Q _{conv} /φ(Q _f -I _{sai})