

Optimização Aula 12

Programação Linear (PL)

Aula 12: Dualidade.

Definição do Problema Dual.

Definição do problema dual.

O que é dualidade em Programação Linear?

Dualidade significa a existência de um outro problema de PL, associado a cada problema de PL.

Esse outro problema designa-se por

problema dual (D).

Nesta relação com o problema dual o problema original designa-se por

problema primal (P).

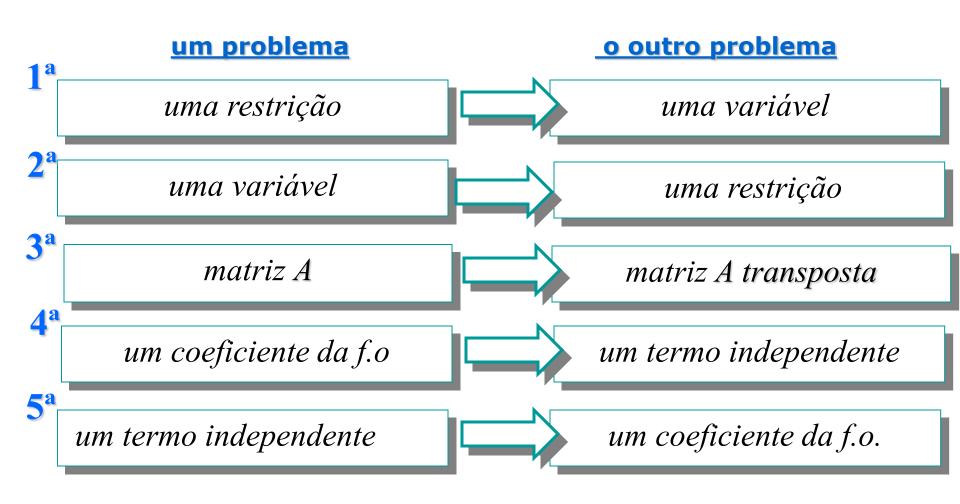
O par de problemas duais (P) - (D).

Os problemas *primal* (P) e *dual* (D) são conhecidos por par de problemas duais (P)-(D)

- (P)-(D) são suportados pelo mesmo sistema de parâmetros;
- a resolução de um deles constitui a resolução simultânea do outro;
- a solução de um, está completamente determinada pela solução do outro.

O par de problemas duais (P)- (D) não é mais do que um par de representações matemáticas do mesmo problema real.

Relações entre o par de problemas duais.



6^a

Relações entre o par de problemas duais.

um problema

o outro problema

um problema de maximização com restrições de desigualdade do tipo (≤)

um problema de minimização com restrições de desigualdade do tipo (≥)

um problema de minimização com restrições de desigualdade do tipo (≥)

um problema de maximização com restrições de desigualdade do tipo (≤)

Par de Problemas Duais na forma canónica.

Problema Primal

$$Maximizar \ z = \sum_{j=1}^{N} c_j x_j$$

sujeito a

$$\sum_{j=1}^{N} a_{ij} x_{j} \le b_{i}$$
$$x_{j} \ge 0$$

$$i=1,...,M, j=1,...,N$$

Problema Dual

Minimizar
$$w = \sum_{i=1}^{M} b_i y_i$$

sujeito a
$$\sum_{i=1}^{M} a_{ij} y_i \ge c_j$$

$$y_i \ge 0$$
 $i=1,...,M, \ j=1,...,N$

Definição do Problema Dual.

O dual do problema dual é

o problema primal.

A relação entre os dois problemas

é reciproca.

Se um dos problemas

indistintamente foi designado

primal,

então o outro é designado

dual.

Diagrama de Tucker para os problemas (P)-(D).

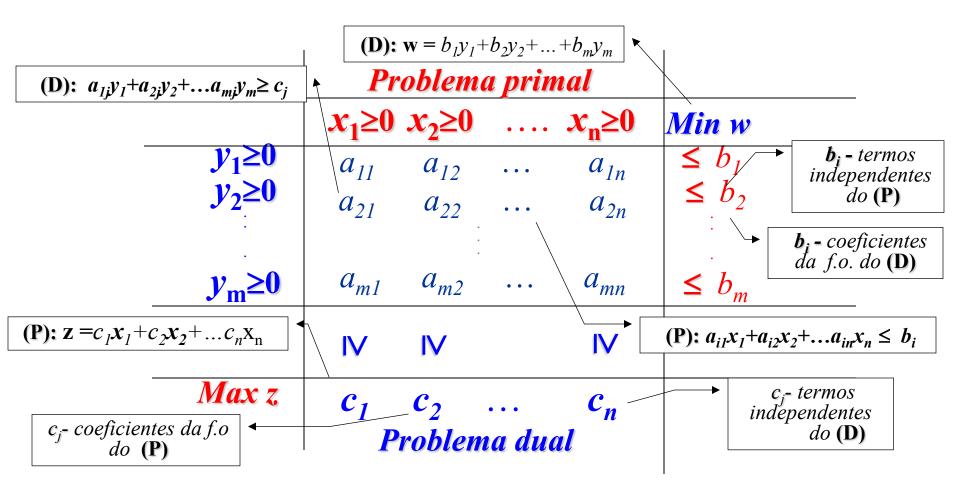
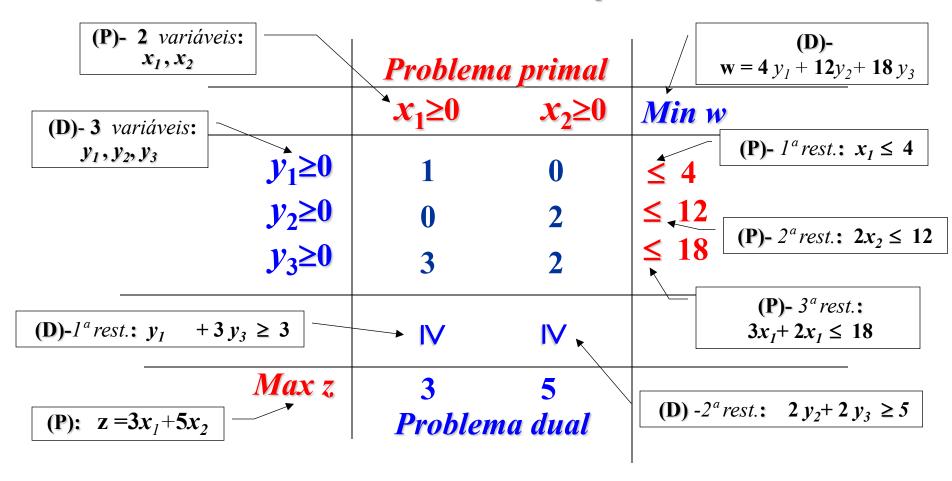


Diagrama de Tucker para o Exemplo Protótipo.



Exemplo Protótipo: Par de Problemas Duais

Problema Primal

Maximizar $z=3x_1+5x_2$ sujeito a

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_{1}, x_{2} \geq 0$$

Problema Dual

Minimizar $w=4y_1+12y_2+18y_3$ sujeito a

$$y_1 + 3y_3 \ge 3$$

$$2y_2 + 2y_3 \ge 5$$

$$y_1,y_2,y_3\geq 0$$

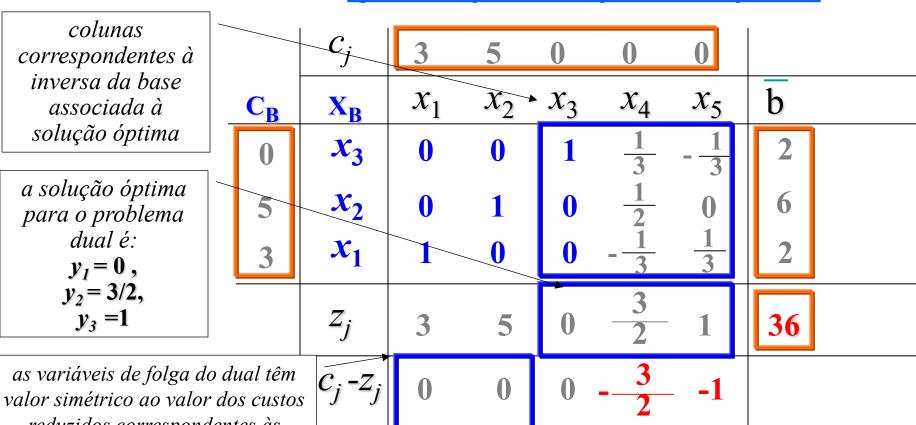
Solução do problema dual. Exemplo protótipo.

Como determinar a solução do problema dual para o exemplo protótipo?

A solução para o problema dual do exemplo protótipo foi já determinada e pode ser encontrada no quadro óptimo do problema primal na linha dos z_j correspondentes às variáveis de folgas x_3 , x_4 , x_5 , onde inicialmente se encontrava a base inicial.

Solução do problema dual. Exemplo

protótipo. Quadro optimo do problema primal



reduzidos correspondentes às colunas das variáveis de decisão

$$y_4 = 0, y_5 = 0$$

Caso 1: Uma restrição de desigualdade do tipo oposto...

Se uma restrição de desigualdade for *do tipo oposto* ao da respectiva forma canónica, então a correspondente variável dual é não positiva.

Prova: Considere um problema de maximização contendo restrições de desigualdade do tipo (≥).

maximizar

$$z = \sum_{j=1}^{N} c_j x_j$$

 sujeito a:
 $\sum_{j=1}^{N} a_{i_1 j} x_j \le b_{i_1}$
 $i_1 = 1, 2, ..., p$
 $\sum_{j=1}^{N} a_{i_2 j} x_j \ge b_{i_2}$
 $i_2 = p + 1, p + 2, ..., M$
 $x_j^j \ge 0$
 $j = 1, 2, ..., N$

As restrições de desigualdades do tipo (≥) podem ser sempre convertidas em restrições do tipo (≤) multiplicando por (-1) ambos os membros.

$$-\sum_{j} a_{i_2 j} x_j \le -b_{i_2} \qquad i_2 = p+1, p+2,...,M$$

Caso 1: Uma restrição de desigualdade do tipo oposto...

Designando por y_{il} e y'_{i2} as variáveis duais correspondentes às restrições de desigualdade tem-se o problema dual:

minimizar
$$w = \sum_{i} b_{i_1} y_{i_1} - \sum_{i} b_{i_2} y'_{i_2}$$

sujeito a:

$$\sum_{i} a_{i_1 j} y_{i_1} - \sum_{i} a_{i_2 j} y_{i_2} \ge c_j \qquad j = 1, 2, \dots N$$

$$y_{i_1}, y'_{i_2} \ge 0$$
 $i_1 = 1, 2, ..., p$ $i_2 = p + 1, p + 2, ..., M$

$$y_{i_2} = -y'_{i_2} \le 0$$

minimizar
$$w = \sum_{i} b_{i_1} y_{i_1} + \sum_{i} b_{i_2} y_{i_2}$$

sujeito a:

$$\sum_{i} a_{i_1 j} y_{i_1} + \sum_{i} a_{i_2 j} y_{i_2} \ge c_j \qquad j = 1, 2, \dots, N$$
$$y_{i_1} \ge 0 \quad i_1 = 1, 2, \dots, p$$

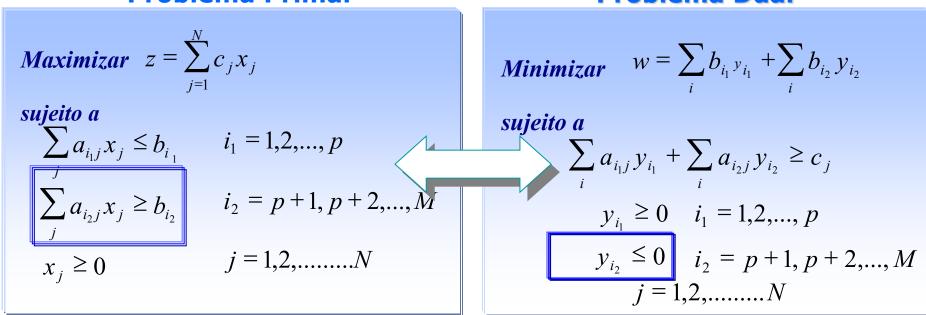
a cada restrição de desigualdade do tipo oposto corresponde uma variável dual **não positiva**

$$y_{i_2} \le 0$$
 $i_2 = p+1, p+2,...,M$

Caso 1: Uma restrição de desigualdade do tipo oposto.

Problema Primal

Problema Dual



Caso 1: Exemplo.

Problema Primal

Minimizar $z = 5x_1 + x_2 + 3x_3$ sujeito a $x_1 + x_3 \ge 5$ $x_2 + 2x_3 \ge 18$ $2x_1 + x_2 \ge 12$ $4x_1 + x_2 + x_3 \le 22$ $x_1, x_2, x_3 \ge 0$

Problema Dual

Maximizar
$$w = 5y_1 + 18y_2 + 12y_3 + 22y_4$$

sujeito a
$$y_1 + 2y_3 + 4y_4 \le 5$$

$$y_2 + y_3 + y_4 \le 1$$

$$y_1 + 2y_2 + y_4 \le 3$$

$$y_1, y_2, y_3 \ge 0, y_4 \le 0$$

Como esta restrição é de **tipo oposto** corresponde-lhe uma variável dual **não positiva**

Caso 2: Uma restrição de igualdade.

Se uma restrição *for de igualdade*, então a correspondente variável dual *é livre*.

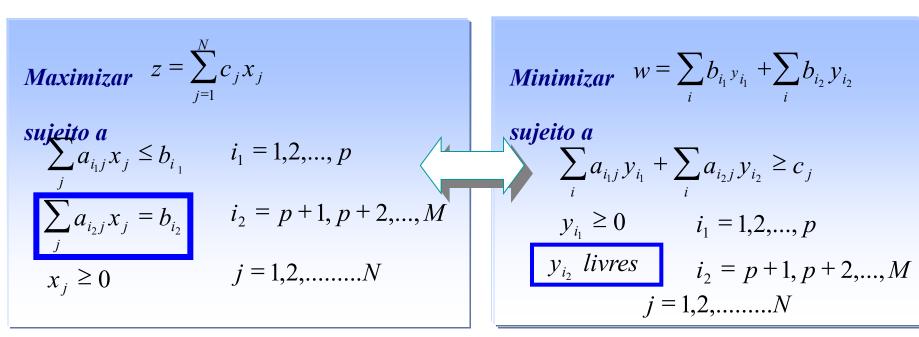
Pode ser demonstrado a partir do facto de que qualquer restrição de igualdade pode ser convertida em duas restrições de desigualdade de um mesmo tipo.

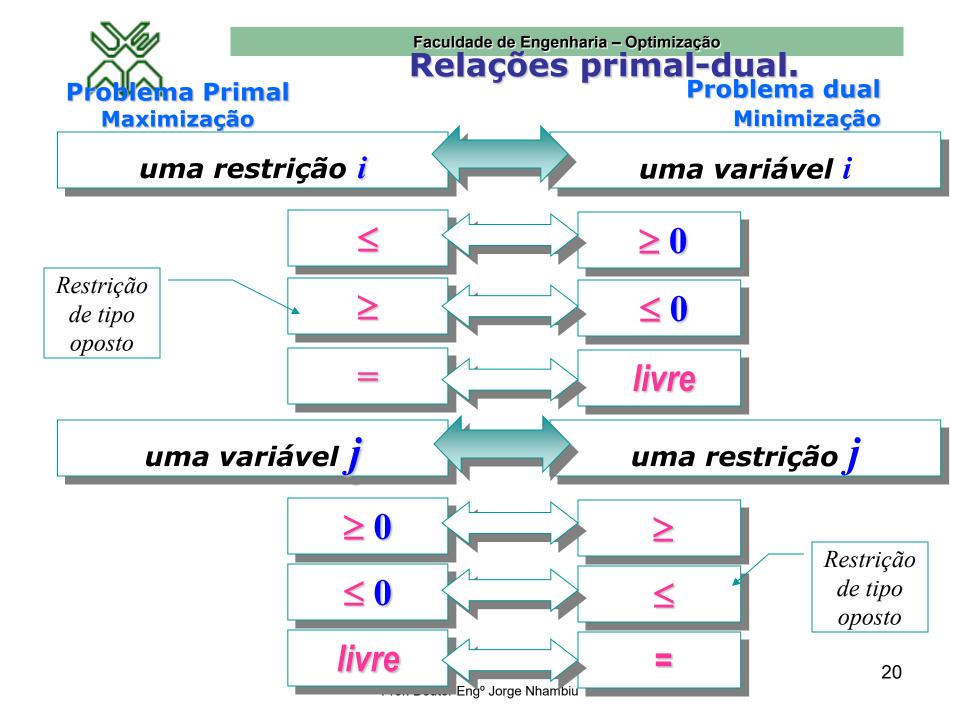
Provar!!!

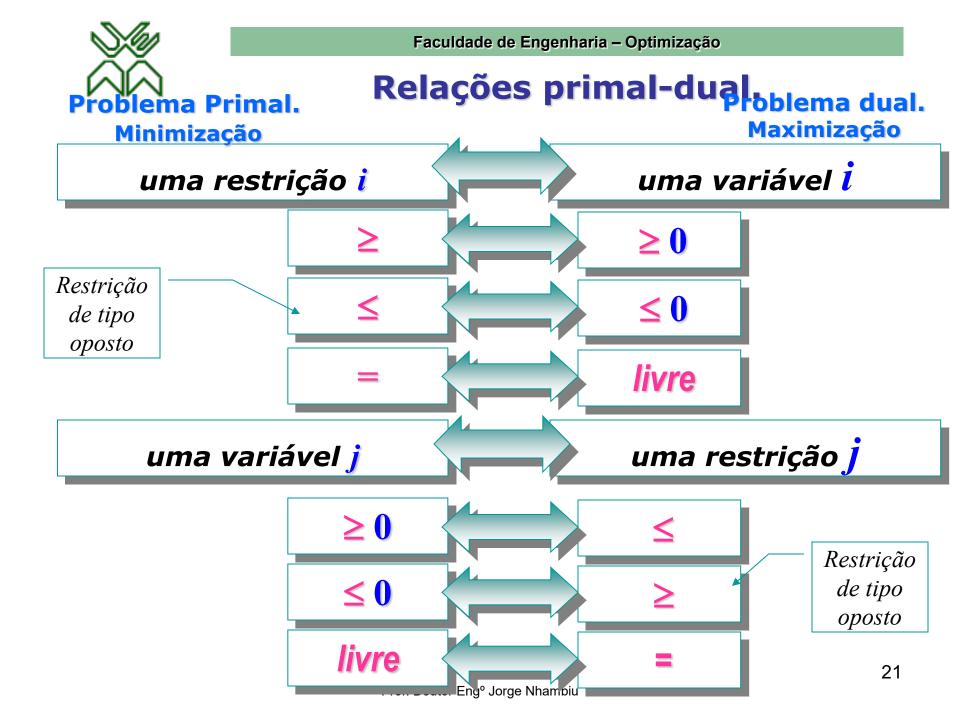
Caso 2: Uma restrição de igualdade.

Problema Primal

Problema Dual







Formulação do Problema Dual. Printaxemplo 1.

Primal: 2 restrições,

3 variáveis

⇔ *Dual* : 2 variáveis,

3 restrições

restrições duais:

<u>Primal</u>: $x_1, x_2, x_3 \ge 0$

variáveis duais:

Primal : restrição nº 1 tipo ≤

 \Leftrightarrow <u>Dual</u>: $y_1 \ge 0$

Primal : restrição nº 2 tipo =

 \Leftrightarrow <u>Dual</u>: y_2 livre

Maximizar $z = 5x_1 + 12x_2 + 4x_3$

sujeito a:

 $x_1 + 2 x_2 + x_3 \le 10$

 $2 x_1 - x_2 + 3 x_3 = 8$

 $x_1, x_2, x_3 \ge 0$

Dual

Minimizar $w = 10 y_1 + 8 y_2$

sujeito a:

 $y_1 + 2y_2 \ge 5$

 $2 y_1 - y_2 \ge 12$

 $y_1 + 3y_2 \ge 4$

 $y_1 \ge 0$, y_2 livre

Primal: 3 restrições,

5 variáveis

5 restrições

restrições duais:

(P):
$$x_1, x_2, x_4 \ge 0$$

⇔ (D) :rest. 1, 2, 4 tipo≤

(P): x_3 *livre*

 \Leftrightarrow (D) :rest. 3 tipo =

(P): $x_5 \le 0$

 \Leftrightarrow (D) :rest. 5 tipo \geq

variáveis duais:

(P) : :rest. 1 tipo =

 \Leftrightarrow (D) : $y_1 livre$

(P) : :rest. 2 tipo ≥

 \Leftrightarrow (D): $y_2 \ge 0$

(P) : :rest. 3 tipo ≤

 \Leftrightarrow (D): $y_3 \leq 0$

prmulação do problema dual. Exemplo 2.

Minimizar
$$z = x_1 + 6x_2 - 7x_3 + x_4 - 5x_5$$

sujeito a: $-5x_1 + 4x_2 - 13x_3 + 2x_4 - 5x_5 = -20$
 $x_1 - x_2 + 5x_3 + x_5 \ge 8$
 $2x_1 - x_3 + x_4 \le 100$
 $x_1, x_2 \ge 0, x_3$ livre, $x_4 \ge 0, x_5 \le 0$

Dual

Maximizar
$$w=-20 y_1 + 8y_2 + 100 y_3$$

sujeito a: $-5 y_1 + y_2 + 2 y_3 \le 1$
 $4 y_1 - y_2 \le 6$
 $-13 y_1 + 5 y_2 - y_3 = -7$
 $2 y_1 + y_3 \le 1$
 $-5 y_1 + y_2 \ge -5$
 $y_1 \text{ livre }, y_2 \ge 0, y_3 \le 0$

Primal: 3 restrições,

2 variáveis

⇔ <u>Dual</u> : 3 variáveis,

2 restrições

restrições duais:

(P): $x_2 \ge 0$

⇔ (D) :rest. 2 tipo ≥

(P): x_1 *livre*

 \Leftrightarrow (D) :rest 1 tipo =

variáveis duais:

(P) : :rest. 1 tipo =

 \Leftrightarrow (D): y_1 livre

(P) : :rest. 2 tipo ≥

 \Leftrightarrow (D): $y_2 \leq 0$

(P) : :rest. 3 tipo ≤

 \Leftrightarrow (D): $y_3 \ge 0$

Formulação do problema dual. Exemplo 3.

 $Maximizar \quad z = 5x_1 + 6x_2$

sujeito a:

$$x_1 + 2 x_2 = 5$$

$$-x_1 + 5x_2 \ge 3$$

$$4x_1 + 7x_2 \le 8$$

$$x_1$$
 livre, $x_2 \ge 0$

Dual

Minimizar

$$w = 5 y_1 + 3y_2 + 8 y_3$$

$$y_1 - y_2 + 4 y_3 = 5$$

$$2 y_1 + 5y_2 + 7y_3 \ge 6$$

$$y_1 \text{ livre }, y_2 \leq 0, y_3 \geq 0$$

24

Pares de Problemas Duais. Notação Matricial. Forma Canónica.

Problema Primal

$$Maximizar z = c^t X$$

sujeito a

$$AX \le b$$
$$X \ge 0$$

Problema Primal

$$Minimizar z = c^t X$$

sujeito a

$$AX \ge b$$
$$X \ge 0$$

$Minimizar \ w = b^t Y$

sujeito a

$$A^t Y \ge c$$
$$Y \ge 0$$

Problema Dual

 $Maximizar \ w = b^t Y$

sujeito a

$$A^t Y \le c$$
$$Y \ge 0$$

Reces de Problemas Duais. Notação Matricial. Forma Padrão.

Problema Primal

 $Maximizar z = c^t X$

sujeito a

$$AX = b$$
$$X \ge 0$$

Problema Primal

 $Minimizar z = c^t X$

sujeito a

$$AX = b$$
$$X \ge 0$$

Problema Dual

 $Minimizar \ w = b^t Y$

sujeito a

$$A^{t}Y \geq c$$
 $Y \ livre$

Problema Dual

 $Maximizar w = b^t Y$

sujeito a

$$A^{t}Y \leq c$$
 $Y \ livre$

Definição do Problema Dual. Conclusões.

estudo da dualidade em Programação Linear considera um problema (o qual é geralmente designado por problema dual) distinto daquele que se pretende resolver (problema primal), mas cuja abordagem permite obter algumas conclusões directamente relacionadas com o problema original (problema primal), nomeadamente referente às condições de optimalidade.