

Optimização

Aula 4

Aula 4. Programação Linear (PL)

- O modelo de Programação Linear.
 - Forma Padrão ("standard") e Forma Canónica.
 - Conceitos fundamentais.
 - Outras formas do modelo:
 - forma cartesiana
 - forma matricial
 - forma vectorial
- Propriedades fundamentais da Programação Linear:
 - Redução à Forma Padrão
 - Conceitos Fundamentais.
 - Teorema Fundamental da PL.

O Modelo de PL.

Função objectivo

onde a_{ij} , b_i e c_j (i=1,2,...,M, j=1,2,...,N) são constantes e em cada restrição apenas se verifica uma e só uma das relações $\{\leq, =, \geq\}$.

Forma Padrão ("standard").

Quando as restrições de um modelo de Programação Linear são apresentadas *na forma de equações* diz-se que esse modelo está na *forma padrão* (ou "*standard*").

Maximizar
$$Z = c_1 x_1 + c_2 x_2 + ... + c_N x_N$$

(Minimizar)
sujeito a
 $a_{11} x_1 + a_{12} x_2 + ... + a_{1N} x_N = b_1$
 $a_{21} x_1 + a_{22} x_2 + ... + a_{2N} x_N = b_2$
 $a_{M1} x_1 + a_{M2} x_2 + ... + a_{MN} x_N = b_M$
 $x_1, x_2, ..., x_j, ..., x_N \ge 0$

Forma Canónica.

Quando as restrições de um modelo de Programação Linear são apresentadas *na forma de inequações* diz-se que esse modelo está na *forma canónica*.

$$\begin{array}{lll} \textit{Maximizar} & \textit{Z} = c_1 x_1 + c_2 x_2 + \ldots + c_N \\ x_N \\ \textit{sujeito a} \\ & a_{11} x_1 + a_{12} x_2 + \ldots + a_{1N} x_N \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \ldots + a_{2N} x_N \leq b_2 \\ & & \ldots \\ & a_{M1} x_1 + a_{M2} x_2 + \ldots + a_{MN} x_N \leq b_M \\ & & x_1, x_2, \ldots, x_j, \ldots, x_N \geq 0 \end{array}$$

Minimizar
$$Z = c_1 x_1 + c_2 x_2 + ... + c_N x_N$$

sujeito a
 $a_{11} x_1 + a_{12} x_2 + ... + a_{1N} x_N \ge b_1$
 $a_{21} x_1 + a_{22} x_2 + ... + a_{2N} x_N \ge b_2$
.....
 $a_{M1} x_1 + a_{M2} x_2 + ... + a_{MN} x_N \ge b_M$
 $x_1, x_2, ..., x_j, ..., x_N \ge 0$

I. Qualquer problema de maximização pode converter-se num problema de minimização, pois:

$$m\acute{a}ximo\ Z = -m\acute{i}nimo\ (-Z)$$

II. Qualquer restrição de desigualdade de tipo "≤" pode ser convertida numa restrição do tipo "≥" multiplicando por (-1) ambos os seus membros.

$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{iN}x_N \le b_i$$

$$-a_{i1}x_1 - a_{i2}x_2 - \dots - a_{iN}x_N \ge -b_i$$

III. Qualquer restrição de igualdade pode ser convertida em duas restrições de desigualdades "≤" equivalentes àquela.

$$a_{i\,1}x_1 + \ldots + a_{i\,N}x_N = b_i$$

$$a_{i1}x_1 + \dots + a_{iN}x_N \le b_i$$

 $a_{i1}x_1 + \dots + a_{iN}x_N \ge b_i$

$$a_{i1}x_1 + \dots + a_{iN}x_N \le b_i$$

- $a_{i1}x_1 - \dots - a_{iN}x_N \le -b_i$

IV. Qualquer restrição de desigualdade pode ser convertida numa restrição de igualdade, através da introdução de uma nova variável (*variável de desvio* ou *folga*) x_{N+1} de valor não negativo.

$$a_{i1}x_1 + \ldots + a_{iN}x_N \leq b_i$$

$$b_i - a_{i1} x_1 - \dots - a_{iN} x_N \ge 0$$

$$x_{N+1} = b_i - a_{i1}x_1 - \dots - a_{iN}x_N \ge 0$$

$$a_{i1}x_1 + ... + a_{iN}x_N + x_{N+1} = b_i$$

$$x_{N+1} \geq 0$$

V. Qualquer variável livre x_j , (não restringida pela condição de não negatividade) pode ser substituída por um par de variáveis não negativas $x_i' \ge 0$ e $x_i'' \ge 0$, fazendo:

$$x_j = x_j^{-1} - x_j^{-1}$$

e deste modo formulando de novo o problema em função destas duas variáveis.

Conceitos Fundamentais(1).

A função a maximizar (minimizar),

$$Z=c_1x_1+c_2x_2+...+c_Nx_N,$$
designa-se por função objectivo (f.o).

As equações (inequações)

designam-se por restrições.

As designaldades $x_1 \ge 0$, $x_2 \ge 0$,..., $x_N \ge 0$ designam-se por condições de não negatividade.

Conceitos Fundamentais(2).

As variáveis $x_1, x_2, ..., x_N$,

designam-se por variáveis de decisão.

As constantes **a**_{ij}, designam-se por **coeficientes tecnológicos.**

As constantes b_i ,

designam-se por termos independentes.

As constantes c_j , designam-se por coeficientes da função objectivo

Conceitos fundamentais(3).

Qualquer especificação de valores para as variáveis de decisão $(x_1, x_2, ..., x_N)$ que satisfaça as restrições do modelo e as condições de não negatividade

designa-se por solução admissível.

O conjunto de todas as soluções admissíveis designa-se por **região de admissibilidade**.

Uma **solução óptima** maximiza (minimiza) a função objectivo sobre toda a região de admissibilidade.

O objectivo da PL é determinar de entre as soluções admissíveis, uma que seja a "melhor", medida pelo valor da função objectivo do modelo. Por "melhor" entende-se o maior ou menor valor, dependendo se o objectivo é maximizar ou minimizar.

Soluções do Problema de PL

- Um problema de PL pode ter:
 - uma única solução óptima
- 0*U*
 - múltiplas soluções óptimas (uma infinidade)
- 0*U*
 - não ter óptimo finito
- *0U*
 - não ter nenhuma solução (neste caso o problema é impossível)

Exemplo Protótipo: Formulação

Capacidade utilizada por
unidade de produção

	militari in promisiro			
Secção Nº	Produto 1	Produto 2	Capacidade disponível	
1	1	0	4	
2	0	2	12	
3	3	2	18	
Lucro unitário (mil Mt)	3	5		

Maximizar
$$Z = 3x_1 + 5x_2$$
,
sujeito a
$$x_1 \leq 4$$

$$2x_2 \leq 12$$

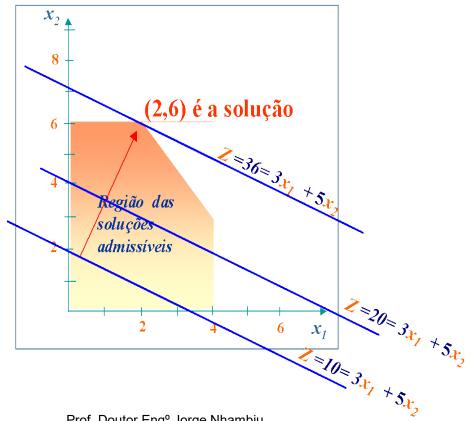
$$3x_1 + 2x_2 \leq 18$$

$$x_1 \geq 0, x_2 \geq 0$$

 \mathbf{x}_{i} - o número de unidades do produto produzidas por minuto, i=1,2. \mathbf{Z} - o lucro total por minuto.

Uma Única Solução Óptima

No exemplo protótipo determinamos uma única solução óptima: $x_1 = 6$, $x_2 = 2$, onde a função objectivo alcança o seu valor $m\acute{a}ximo\ Z=36$.



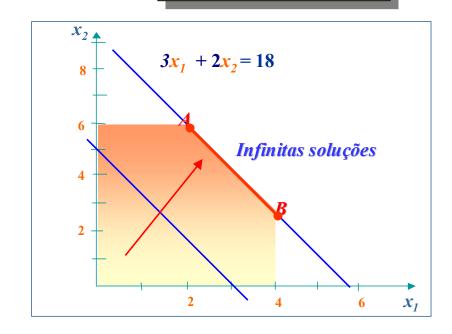
Múltiplas Soluções

Se um problema de PL tem soluções óptimas múltiplas então tem um número infinito delas.

No exemplo protótipo mudámos o lucro unitário do *produto 2* de 5 para 2 Mts, i.e., a função objectivo é agora a recta $Z=3x_1+2x_2$.

(a f.o. tem o mesmo gradiente da recta da 3^a restrição $3x_1 + 2x_2 = 18$).

Todos os pontos (uma infinidade) do segmento de recta AB, são soluções óptimas, pois todas alcançam o melhor valor da f.o.: z=18.

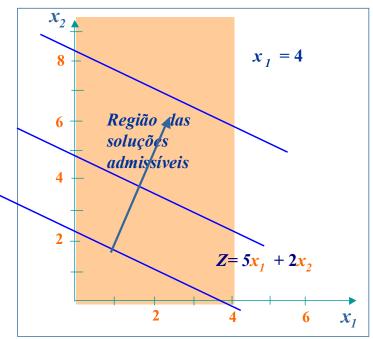


O Problema não tem Óptimo Finito.

Se as restrições não evitarem o crescimento indefinido do valor da função objectivo Z, no sentido favorável (positivo ou negativo) então *o problema não tem óptimo finito*.

No exemplo protótipo, eliminando as restrições:

 $2x_2 \le 12$, $3x_1 + 2x_2 \le 18$, a região de admissibilidade fica não limitada e o valor da função objectivo pode crescer *indefinidamente* nesta região.



O problema é Impossível

Se não existirem soluções admissíveis (o conjunto de soluções admissíveis é vazio), então o problema não tem nenhuma solução, *o problema é impossível*.

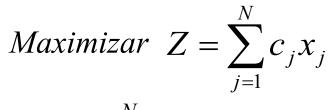
Outras formas do modelo. 1º. Forma Cartesiana.

 $\begin{aligned} & \textit{Maximizar} \ \ Z = c_1 x_1 + c_2 x_2 + \ldots + c_N x_N \\ & \textit{sujeito } a \end{aligned}$

$$\begin{array}{lll} a_{11}x_1 + & a_{12}x_2 + \ldots + & a_{1N}x_N & \leq b_1 \\ a_{21}x_1 + & a_{22}x_2 + \ldots + & a_{2N}x_N & \leq b_2 \end{array}$$

$$a_{MI}x_1 + a_{M2}x_2 + \dots + a_{MN}x_N \le b_M$$

 $x_1, x_2, \dots, x_i, \dots, x_N \ge 0$



$$\sum_{j=1}^{N} a_{ij} x_{j} \le b_{i}$$
$$x_{j} \ge 0$$

$$i = 1, 2, \dots M$$

$$j = 1, 2, \dots N$$

Outras formas do modelo. 2º. Forma Matricial.

 $\begin{aligned} & \textit{Maximizar} & \ \textit{Z} = c_1 x_1 + c_2 x_2 + \ldots + c_N x_N \\ & \textit{sujeito } a \end{aligned}$

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1N}x_N \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2N}x_N \le b_2$

$$a_{MI}x_1 + a_{M2}x_2 + ... + a_{MN}x_N \le b_M$$

 $x_{1, x_{2,..., x_{j,..., x_N}} \ge 0$

Maximizar Z = c'X AX < b

$$X \ge 0$$

$$c = [c_1, c_2, ..., c_N]$$
, $X = [x_1, x_2, ..., x_N]$
 $b = [b_1, b_2, ..., b_M]$,
 $A = [a_{ij}]_{(M \times N)}$, $0 = [0, 0, ..., 0]$

Outras formas do Modelo. 3º. Forma Vectorial

Maximizar $Z=c_1x_1+c_2x_2+...+c_Nx_N$ sujeito a

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1N}x_N \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2N}x_N \le b_2$

$$a_{MI}x_1 + a_{M2}x_2 + \dots + a_{MN}x_N \le b_M$$

 $x_1, x_2, \dots, x_i, \dots, x_N \ge 0$

Maximizar Z = c'X

$$x_1 P_1 + x_2 P_2 + ... + x_N P_N \le P_o$$

 $x_j \ge 0$
 $j = 1, 2, N$

$$c = [c_1, c_2, ..., c_N]', X = [x_1, x_2, ..., x_N]'$$

$$P_{j} = [a_{1j}, a_{2j}, ..., a_{Mj}]'$$
 $P_{0} = [b_{1}, b_{2}, ..., b_{M}]$

Redução à Forma Padrão (1)

O primeiro passo para a resolução de um problema de PL consiste na sua redução à **Forma Padrão**. Para isto é preciso converter as restrições funcionais de desigualdade em restrições equivalentes de igualdade. uma restrição de desigualdade de tipo " \leq " pode ser convertida numa restrição de igualdade adicionando uma nova variável **não negativa** (variável de desvio ou folga) x_{N+1} :

$$\begin{aligned} \mathbf{a}_{i\,1}\mathbf{x}_1 + \ldots + \mathbf{a}_{i\,N}\mathbf{x}_N &\leq \mathbf{b}_i \iff \mathbf{a}_{i\,1}\mathbf{x}_1 + \ldots + \mathbf{a}_{i\,N}\mathbf{x}_N + \mathbf{x}_{N+1} &= \mathbf{b}_i \\ \mathbf{x}_{N+1} &\geq 0 \end{aligned}$$

Redução à Forma Padrão (2)

uma restrição de desigualdade de tipo " \geq " pode ser convertida numa restrição de igualdade subtraindo uma nova variável não negativa (variável de desvio ou folga) x_{N+1} :

$$a_{i1}x_1 + \dots + a_{iN}x_N \ge b_i \Leftrightarrow a_{i1}x_1 + \dots + a_{iN}x_N - x_{N+1} = b_i$$
$$x_{N+1} \ge 0$$

Exemplo Protótipo. Redução à Forma Padrão.

Restrição de desigualdade

Variável de folga

Restrição de igualdade

1 a

$$x_1 \leq 4$$

 x_3

$$x_1 + x_3 = 4$$

2^a

$$2x_2 \leq 12$$

 $X_{\mathcal{A}}$

$$2 x_2 + x_4 = 12$$

3a

$$3x_1 + 2x_2 \leq 18$$

 x_5

$$3x_1 + 2x_2 + x_5 = 18$$

Exemplo Protótipo. Redução à Forma Padrão.

As variáveis de folga têm coeficientes nulos na f.o.

Forma Canónica

Maximizar $Z=3x_1+5x_2$

sujeito a

$$x_{1} \leq 4$$

$$2x_{2} \leq 12$$

$$3x_{1} + 2x_{2} \leq 18$$

$$x_1, x_2 \ge 0$$

Forma Padrão

Maximizar $Z=3x_1+5x_2$

sujeito a

$$x_1 + x_3 = 4$$
 $2x_2 + x_4 = 12$
 $3x_1 + 2x_2 + x_5 = 18$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Conceitos Fundar

A introdução destes conceitos são necessários para a compreensão do método Simplex.

- Suponha-se que:
 - m número de restrições funcionais,
 - n número total de variáveis (de decisão e de folga);
 - b_i ≥ 0, (i=1,2,...,m) em caso contrário multiplicar por (-1)
 - o problema de PL se encontra na forma padrão:

Maximizar
$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$
 (4.1)
sujeito a
$$a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n = b_2$$
...
$$a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m$$

$$x_1, x_2, ..., x_m, ..., x_n \ge 0 \quad (m \le n)$$
(4.3)

Conceitos Fundamentais

Qualquer conjunto de valores para as variáveis $(x_1, x_2, ..., x_n)$ que satisfaça as restrições do modelo, i,e, que seja uma solução do sistema de equações lineares (4.2)

designa-se por solução.

Uma solução admissível é uma solução $X = (x_1, x_2, ..., x_n)$, $X \in \mathbb{R}^n$, que também verifica as condições de não negatividade (4.3), i.e., todos os seus valores são não negativos.

O conjunto de todas as soluções admissíveis designa-se por **região de admissibilidade.**

Uma **solução óptima** maximiza (minimiza) a função objectivo sobre toda a região de admissibilidade.

Como determinar uma solução do problema de PL na forma Padrão?

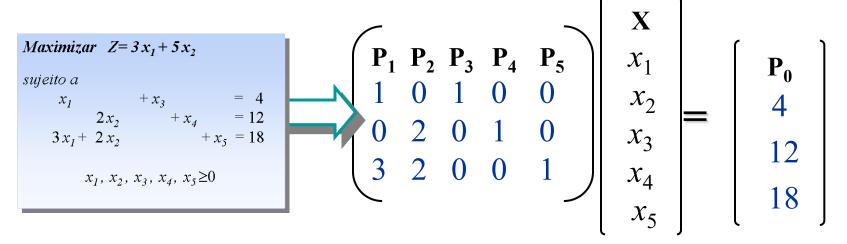
Maximizar
$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$
 (4.1)
sujeito a
 $a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1$
 $a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n = b_2$ (4.2)
...
 $a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m$
 $x_1, x_2, ..., x_m, ..., x_n \ge 0$ $(m \le n)$ (4.3)

c(A) - característica de uma matriz A_{mxn} que corresponde ao número máximo de colunas de A linearmente independentes

Para determinar uma solução do problema de PL é preciso resolver o sistema de equações lineares (4.2). Este sistema é constituído por m equações e n incógnitas, Suponha que a característica da matriz do sistema é igual a m, c(A)=m, e que $m \le n$. Este sistema tem uma infinidade de soluções, tratando-se portanto dum sistema possível e indeterminado de grau n-m. Isto significa que podemos exprimir m variáveis em função das n-m restantes.

Exemplo Protótipo. Resolução do Sistema de Equações Lineares.

O sistema de equações lineares é constituído por 3 equações e 5 incógnitas, onde $3 \le 5$. A característica c(A)=3.

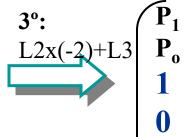


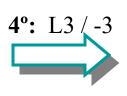
Este sistema tem uma *infinidade de soluções*, tratando-se portanto dum *sistema possível e indeterminado de grau* 5-3=2, o que significa que podemos exprimir 3 *variáveis* em *função das restantes* 2.

esolução do sistema de equações lineares pelo Método Gauss-Jordan.

I- Reduzir 3 colunas de A a uma matriz identidade I.

					`
\mathbf{P}_1	$\mathbf{P_2}$	P_3	P_4	P_5	$\mathbf{P_o}$
1	0	1	0	0	4
0	1	0	P ₄ 0 1/2 0	0	6
0	2	-3	0	1	6
					_





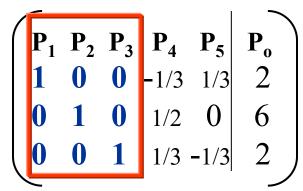
\mathbf{P}_{1}	$\mathbf{P_2}$	P_3	P_4	P ₅	Po
1	0	1	0	0	4
0	1	0	P ₄ 0 1/2 1/3 -	0	6
0	0	1	1/3 -	-1/3	2



Ficam reduzidas as colunas {P1, P2, P3} a uma matriz identidade I.

Resolução do sistema de equações lineares pelo Método Gauss-Jordan.

II- Atribuindo valores arbitrários a x_4 e x_5 , as variáveis x_1, x_2, x_3 podem ser expressas em função de x_4 e x_5 .



Infinidade de soluções

Obviamente, quando $\lambda_1 = \lambda_2 = 0$, uma solução seria: $x_1 = 2$, $x_2 = 6$, $x_3 = 2$, $x_4 = 0$, $x_5 = 0$, i.e., X = (2, 6, 2, 0, 0).

$$x_4 = \lambda_1, \ \lambda_1 \in \Re$$

 $x_5 = \lambda_2, \ \lambda_2 \in \Re$
 $x_1 = 2 + 1/3 \ \lambda_1 - 1/3 \ \lambda_2$
 $x_2 = 6 - 1/2 \ \lambda_1$
 $x_3 = 2 - 1/3 \ \lambda_1 + 1/3 \ \lambda_2$

Base do Sistema. Variáveis básicas e não básicas.

Se uma submatriz $B_{m\times m}$ da matriz A do sistema de equações correspondente às restrições (4.2) é não singular, i.e., o determinante de $B_{m\times m}$ é não nulo,

então $B_{m \times m}$ designa-se por **base**.

As m variáveis $x_1, x_2, ..., x_m$, correspondentes às colunas de $B_{m \times m}$, designam-se por **variáveis básicas** e as restantes n-m variáveis x_{m+1} , $x_{m+2}, ..., x_n$

designam-se por variáveis não básicas.

dução Básica e Solução Básica Admissível.

Sem perda de generalidade, suponha que a *base* B é composta pelas *m* primeiras colunas, i.e., $B = \{ P_1, P_2, ..., P_m \}$

como o determinante de B é não nulo (pela definição de base), o sistema de equações BX_B =b tem solução única

Obtém-se uma **solução básica** para o sistema (4.2) atribuindo o valor 0 às **n-m variáveis não básicas** x_{m+1} , x_{m+2} ,..., x_n , e determinando uma solução para as restantes **m variáveis básicas** x_1 , x_2 ,..., x_m , i.e., $X = (x_1, x_2, ..., x_m, 0, ..., 0)$, onde $X_B = (x_1, x_2, ..., x_m)$ é a única solução do sistema $B X_B = b$.

Se todas as variáveis básicas da solução básica $X = (x_1, x_2, ..., x_m, 0, ..., 0)$ são **não negativas** então X é uma solução básica admissível (SBA).

Solução Básica Degenerada.

Suponha-se $X = (x_1, x_2, ..., x_m, 0, ..., 0)$ uma solução básica para o sistema (4.2) com as correspondentes variáveis básicas $x_1, x_2, ..., x_m$.

Se alguma variável básica $x_1, x_2, ..., x_m$ for igual a zero, a solução básica designa-se por

solução básica degenerada.

Se todas as variáveis básicas são **não nulas**

a solução básica designa-se por

solução básica não degenerada.

Exemplo Protótipo: Base, SBA.

• A matriz B composta pelas colunas $B = \{ P_3, P_4, P_5 \}$ é uma base do sistema. O determinante de B é não nulo, pelo que o sistema de equações $BX_B = b$ tem solução única.

$$\begin{bmatrix}
P_1 & P_2 & P_3 & P_4 & P_5 \\
1 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
3 & 2 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
P_3 & P_4 & P_5 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_B \\
X_3 \\
X_4 \\
X_5
\end{bmatrix} = \begin{bmatrix}
P_0 \\
4 \\
12 \\
18
\end{bmatrix}$$

Obviamente x_3 =4, x_4 =12, x_5 =18 é a única solução deste sistema.

$$X = (0, 0, 4, 12, 18) \acute{e}$$

uma **solução básica admissível** (SBA) correspondente a esta base.

$$x_3$$
=4, x_4 =12, x_5 =18 são variáveis
básicas e x_1 =0, x_2 =0
são variáveis não básicas.

Quantas soluções básicas tem um problema de PL?

Matriz das restrições do exemplo Protótipo

$$\mathbf{A} = \begin{pmatrix} \mathbf{P_1} & \mathbf{P_2} & \mathbf{P_3} & \mathbf{P_4} & \mathbf{P_5} \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix}$$

O número de *soluções básicas* é igual ao número de matrizes 3x3 que podem ser extraídas da matriz A com determinante não nulo

$$\binom{n}{m} = \frac{n!}{m!(n-m)!} \qquad \qquad \binom{5}{3} = 10$$

Existem 10 submatrizes candidatas a bases:

$$B_{1} = \{ P_{1}, P_{2}, P_{3} \}$$

$$B_{2} = \{ P_{1}, P_{3}, P_{4} \}$$

$$B_{3} = \{ P_{1}, P_{4}, P_{5} \}$$

$$B_{4} = \{ P_{1}, P_{2}, P_{4} \}$$

$$B_{5} = \{ P_{1}, P_{2}, P_{5} \}$$

$$B_6 = \{ P_1, P_3, P_5 \} \rightarrow determinante nulo$$
 $B_7 = \{ P_2, P_3, P_4 \}$
 $B_8 = \{ P_2, P_3, P_5 \}$
 $B_9 = \{ P_2, P_4, P_5 \} \rightarrow determinante nulo$
 $B_{10} = \{ P_3, P_4, P_5 \}$

Exemplo Protótipo: Matrizes com determinante nulo.

$$\mathbf{A} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_2 & \mathbf{P}_3 & \mathbf{P}_4 & \mathbf{P}_5 \\ \mathbf{1} & 0 & \mathbf{1} & 0 & \mathbf{0} \\ \mathbf{0} & 2 & \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{3} & 2 & \mathbf{0} & 0 & 1 \end{pmatrix}$$

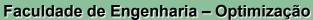
$$\mathbf{A} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_2 & \mathbf{P}_3 & \mathbf{P}_4 & \mathbf{P}_5 \\ \mathbf{1} & 0 & \mathbf{1} & 0 & \mathbf{0} \\ \mathbf{0} & 2 & \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{3} & 2 & \mathbf{0} & 0 & 1 \end{pmatrix} \qquad \mathbf{x}_2 = 0 \qquad \mathbf{B}_6 = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_3 & \mathbf{P}_5 \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{3} & \mathbf{0} & \mathbf{1} \end{pmatrix} \mid \mathbf{B}_6 \mid = 0$$

O determinante de B_6 é nulo \Rightarrow B não é base \Rightarrow o sistema é indeterminado

$$\mathbf{A} = \begin{pmatrix} \mathbf{P_1} & \mathbf{P_2} & \mathbf{P_3} & \mathbf{P_4} & \mathbf{P_5} \\ 1 & \mathbf{0} & 1 & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{2} & 0 & \mathbf{1} & \mathbf{0} \\ 3 & \mathbf{2} & 0 & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_2 & \mathbf{P}_3 & \mathbf{P}_4 & \mathbf{P}_5 \\ 1 & \mathbf{0} & 1 & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{2} & 0 & \mathbf{1} & \mathbf{0} \\ 3 & \mathbf{2} & 0 & \mathbf{0} & \mathbf{1} \end{pmatrix} \qquad \mathbf{B}_9 = \begin{pmatrix} \mathbf{P}_2 & \mathbf{P}_4 & \mathbf{P}_5 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{2} & \mathbf{1} & \mathbf{0} \\ \mathbf{2} & \mathbf{0} & \mathbf{1} \end{pmatrix} \mid \mathbf{B}_9 \mid = 0$$

O determinante de B_o é nulo \Rightarrow B não é base \Rightarrow o sistema é indeterminado



Exemplo Protótipo. Soluções Básicas Admissíveis.

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 3 & 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 = 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} P_3 & P_4 & P_5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_B \\ X_3 \\ X_4 \\ X_5 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

$$Det(B_{10})$$
 não nulo $\Rightarrow SBA X=(0, 0, 4, 12, 18)$

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{X_4 = 0} B_1 = \begin{pmatrix} P_1 & P_2 & P_3 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 2 & 0 \end{pmatrix} \begin{pmatrix} X_B \\ X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

$$Det(B_1)$$
 não nulo \Rightarrow SBA X= (2, 6, 2, 0, 0)

Exemplo Protótipo. Soluções Básicas Admissíveis.

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} x_3 = 0$$

$$B_4 = \begin{pmatrix} P_1 & P_2 & P_4 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \\ 3 & 2 & 0 \end{pmatrix} \begin{pmatrix} X_B \\ X_1 \\ X_2 \\ X_4 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

$$Det(B_4)$$
 não nulo $\Rightarrow SBA X=(4, 3, 0, 6, 0)$

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_2=0} B_3 = \begin{pmatrix} P_1 & P_4 & P_5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_B \\ X_1 \\ X_4 \\ X_5 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

 $Det(B_3)$ não nulo \Rightarrow SBA X= (4, 0, 0, 12, 6)

Exemplo Protótipo. Soluções Básicas Admissíveis.

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} x_1 = 0$$

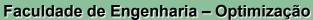
$$x_1 = 0$$

$$x_4 = 0$$

$$B_8 = \begin{pmatrix} P_2 & P_3 & P_5 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_B \\ X_2 \\ X_3 \\ X_5 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

 $Det(B_8)$ não nulo $\Rightarrow SBA X = (0, 6, 4, 0, 6)$

 $X_B = B^{-1} P_0$



Exemplo Protótipo.

Soluções Básicas Não Admissíveis (SBNA).

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} x_1 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_1 = 0$$

$$x_5 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_1 = 0$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_7 = 0$$

 $Det(B_7)$ não nulo , $x_4 < 0 \Rightarrow SBNA X=(0, 9, 4, -6, 0)$

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_2=0} B_2 = \begin{pmatrix} P_1 & P_3 & P_4 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ x_1 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

 $Det(B_2)$ não nulo, $x_3 < 0 \Rightarrow SBNA X = (6, 0, -2, 12, 0)$

Exemplo Protótipo. Soluções Básicas Não Admissíveis (SBNA).

$$A = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 & P_5 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix} x_3 = 0$$

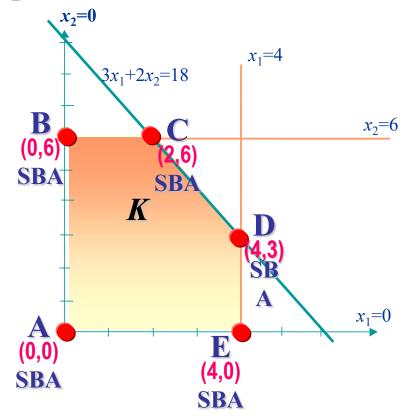
$$B_5 = \begin{pmatrix} P_1 & P_2 & P_5 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} X \\ x_1 \\ x_2 \\ x_5 \end{pmatrix} = \begin{pmatrix} P_0 \\ 4 \\ 12 \\ 18 \end{pmatrix}$$

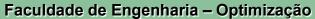
 $Det(B_5)$ não nulo, $x_5 < 0 \Rightarrow SBNA X=(4, 6, 0, 0, -6)$

Exemplo Protótipo. Soluções Básicas Admissíveis (SBA).

Existem 5 SBA que correspondem a 5 pontos extremos de K.

Pontos Extr.	SBA	Base
A=(0,0)	X=(0,0,4,12,18)	$B=\{P_3,P_4,P_5\}$
B=(0,6)	X=(0,6,4,0,6)	$B=\{P_2,P_3,P_5\}$
C=(2,6)	X=(2,6,2,0,0)	$B=\{P_1, P_2, P_3\}$
D=(4,3)	X=(4,3,0,6,0)	$B=\{P_1, P_2, P_4\}$
E=(4,0)	X=(4,0,0,12,6)	$B=\{P_1, P_4, P_5\}$

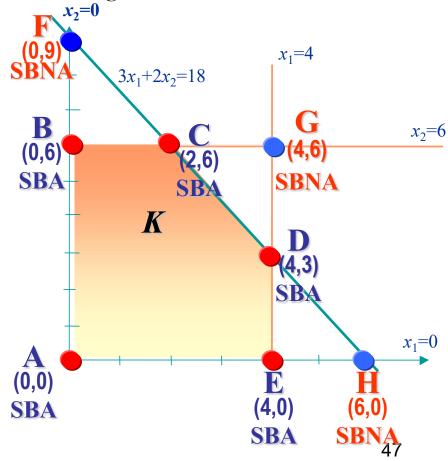




Exemplo Protótipo. Soluções Básicas Não Admissíveis (SBNA)

Existem 3 SBNA que correspondem àqueles pontos onde se intersectam pelo menos duas restrições e que ficam fora da região de admissibilidade.

	SBNA	Base
F=(0,9)	X=(0,9,4,-6, 0)	$B=\{P_2, P_3, P_4\}$
G=(4,6)	X=(4,6,0,0,-6)	$B=\{P_1, P_2, P_5\}$
H=(6,0)	X=(6,0,-2,12,0)	$B=\{P_1,P_3,P_4\}$



Teorema Fundamental da PL.

Se existe uma solução admissível do problema de PL definido pelas expressões (4.1), (4.2) e (4.3), então existe uma solução básica admissível, e se existe uma solução óptima admissível então existe uma solução óptima básica admissível.

Número de Soluções Básicas.

- Do teorema fundamental da PL conclui-se que não é necessário procurar a solução óptima entre todas as soluções admissíveis, mas apenas entre as soluções básicas admissíveis.
- O *número máximo* destas *soluções básicas* para um problema com *m restrições* e *n variáveis*, é dado pelo número de possíveis combinações de *m* números que podem ser obtidas usando *n números*:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

A solução óptima poderia ser encontrada pela experimentação de todas as soluções básicas admissíveis, porém este método é tremendamente ineficaz.

Conclusões

A Programação Linear procura:

- 1. Desenvolver um método que permita passar de *uma* solução básica admissível para uma outra solução básica admissível que corresponda a um melhor valor da função objectivo;
- 2. Dispor de um *critério* que permita saber quando se *alcançou a solução óptima* sem necessidade de experimentar todas *as soluções básicas*.