

Optimização

Aula 13

Programação Linear (PL).

Aula 13 Dualidade. Propriedades.

- Propriedades Fundamentais.
- Propriedade dos Desvios Complementares. (complementaridade das slacks)

Formas Canónica e Padrão de Dualidade.

Problema Primal

 $Maximizar z = c^t X$

sujeito a

$$AX \le b$$
$$X \ge 0$$

Problema Primal

 $Maximizar z = c^t X$

sujeito a

$$AX = b$$
$$X \ge 0$$

Problema Dual

sujeito a

$$A^t Y \ge c$$
$$Y \ge 0$$

Problema Dual

 $Minimizar \ w = b^t Y$

sujeito a

$$A^{t}Y \ge c$$
 $Y \ livre$

Teorema 13.1 (fraco de dualidade)

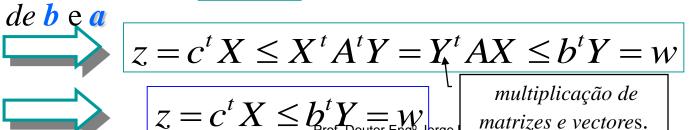
Considere o anterior par de problemas duais (P)-(D) na forma canónica.

Se X é admissível para (P) e Y é admissível para (D) então:

 $z = \ell^t X \le b^t Y = w$,i.e., o valor da função objectivo de qualquer solução admissível do problema primal, não excede o valor da função objectivo do problema dual.

Prova:como X e Y são soluções admissíveis para os respectivos problemas primal-dual então:

$$X \in SBAP$$
 $Y \in SBAD$
 $Y^t AX \leq Y^t b = b^t Y = w$
 $Y \geq 0$
 $Y = 0$
 Y



Faculdade de Engenharia - Optimização

Corolário 13.1. (corolário do teorema fraco de dualidade)

Se X^* é admissível para (P) e Y^* é admissível para (D) e os valores óptimos das respectivas funções objectivo coincidem, i.e., $z = c^t X = b^t Y^* = w^*$, então X^* é a solução óptima do primal e Y^* é a solução óptima do dual

Prova:

pelo teorema 13.1 qualquer solução admissível X do primal

$$c^t X \leq b^t Y^*$$

por hipótese

$$c^t X^* = b^t Y^*$$

$$c^t X \le c^t X^*$$

De igual forma, pode ser demonstrado que Y* é a solução óptima do dual

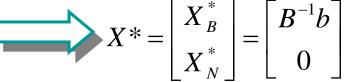
X* é a solução óptima do primal

eorema 13.2: (relações entre as soluções óptimas primal e dual).

Se o primal tem solução óptima (i.e. tem óptimo finito) então o respectivo dual também tem e os correspondentes valores óptimos z^* e w^* coincidem.

Prova: Considere o problema primal de maximização na forma padrão e seja A a matriz das restrições:

*X***é* solução óptima do primal



pelo critério de optimalidade para a solução primal, todos os custos reduzidos são não negativos

$$c_j - z_j = c_j - c_B^t B^{-1} P_j \le 0, \quad \forall j = 1, 2, ... n$$

Faça-se
$$Y^* = (y_1, y_2, ..., y_m)$$

$$c_{i} - Y^{*}P_{j} \leq 0, \forall_{j=1,2,...,n}$$

Y* é uma SBA do problema dual

Minimizar $w = y^t \mathbf{b}$ s. a $A^tY \geq \mathbf{c}$ Y livres

$$z^* = c^t X^* = c_B^t X_B^* = c_B^t B^{-1} b = Y^{t_*} b = b^t Y^* = w^*$$

$$Y^* = c_B^t B^{-1}$$

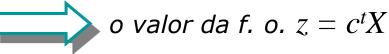
 $Y^* = c_B^t B^{-1}$ é a solução óptima para o problema dual

Teorema Fundamental da Dualidade.

- I°. Um problema de PL tem óptimo finito se e só existirem soluções admissíveis para os problemas primal-dual.
- 2°. Se algum dos problemas não tem óptimo finito, então o outro não possui soluções admissíveis, i.e., é impossível.

Prova: 10.

se X é admissível para (P)



pelo Teorema fraco de dualidade

$$z = c^t X \le b^t Y = w$$

o valor da f.o. $w = b^t Y$

a solução óptima X* também verifica:

$$z^* = c^t X^* \le b^t Y = w$$

w é finito

z* é finito

o primal tem óptimo finito

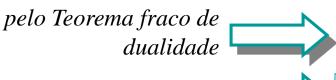
o dual tem óptimo finito

Teorema Fundamental da Dualidade.

Prova 2º:

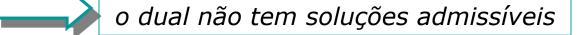
2°. Se algum dos problemas não tem óptimo finito, então o outro não possui soluções admissíveis, i.e., é impossível.

suponha que o primal não tem óptimo finito (i.e. $z \to \infty$); suponha ao contrário que o dual tem soluções admissíveis; seja Y uma solução dual admissível (SBAD) :



$$z = c^t X \le b^t Y = w$$
 é limitada !!!

absurdo !!! (por hipóteses $z \to \infty$)



analogamente é possível demonstrar que se o dual não tem óptimo finito, então o primal não tem soluções admissíveis.

Teorema Fundamental da Dualidade. Conclusões

Segundo o Teorema fundamental da dualidade pode concluir-se que para os problemas primal-dual, verifica-se uma e só uma das seguintes situações:

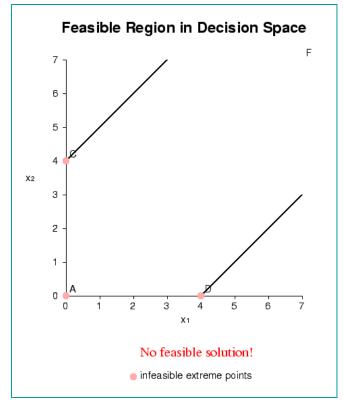
- Ambos têm soluções óptimas X* e Y* e os valores óptimos das respectivas funções objectivo coincidem: z* = w*;
- ➤ Se um problema não tem óptimo finito, então o outro é impossível;
- > Ambos os problemas são impossíveis.

Ambos os Problemas são Impossíveis. Exemplo.

Primal

Maximizar $z=x_1+x_2$ sujeito a $-x_1+x_2=4$ $x_1-x_2=4$

$$x_1, x_2 \ge 0$$

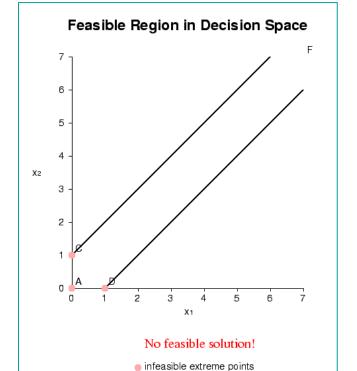


Dual

Minimizar
$$w = 4 y_1 + 4 y_2$$

sujeito a
 $-y_1 + y_2 \ge 1$
 $y_1 - y_2 \ge 1$

 y_1 , y_2 , livres



Problema dual: Forma Canónica e Forma Padrão.

Forma canónica

Primal

Maximizar $z = c^t X$

s. a

$$A X \le b$$
$$X > 0$$

Forma padrão

Primal

Maximizar $z = c^t X$

s. a

$$AX + IX_s = b$$
$$X, X_s \ge 0$$

A matriz das restrições pode ser decomposta como: [A, I], X_s é o vector das variáveis

de folga

Dual

Minimizar $w = y^t b$

s. a

$$A^t Y \ge c$$

 $Y \ge 0$

Minimizar $w = y^t b$

s. a

$$A^{t}Y \ge c$$
 $IY \ge 0$
 $Y \text{ livres}$

Fica redundante, pode ser eliminada, e obtém-se a forma canónica do problema dual

Se uma solução é admissível para o problema dual na forma padrão com variáveis duais livres, é admissível para o problema dual do problema original na forma canónica, i.e., verificam-se as restrições de não negatividade para as variáveis duais.

ulando o Problema Dual a partir da Forma Padrão. Exemplo Protótipo. Forma padrão

Forma canónica **Primal**

Maximixar $z = 3x_1 + 5x_2$ sujeito a $x_1 \leq 4$ $2x_2 \le 12$ $3 x_1 + 2 x_2 \le 18$

$$x_1, x_2 \ge 0$$

Primal

Maximixar $z = 3x_1 + 5x_2$ sujeito a

$$x_1 + x_3 = 4$$

 $2x_2 + x_4 = 12$
 $3x_1 + 2x_2 + x_5 = 18$

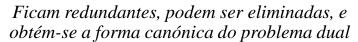
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Minimizar $w = 4y_1 + 12y_2 + 18y_3$ sujeito a

$$y_1 + 3y_3 \ge 3$$

 $2y_2 + 2y_3 \ge 5$

$$y_1, y_2, y_3 \ge 0$$



Minimizar $w = 4y_1 + 12y_2 + 18y_3$ sujeito a

$$y_{1} + 3y_{3} \ge 3$$

$$2y_{2} + 2y_{3} \ge 5$$

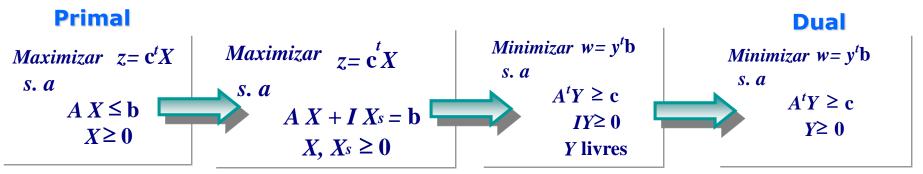
$$y_{1} \ge 0$$

$$y_{2} \ge 0$$

$$y_{3} \ge 0$$

ਕ੍ਰੇriáveis de Decisão Duais e Quadro Primal Óptimo.

Relação I: Os valores das variáveis de decisão da solução óptima dual encontram-se no quadro simplex óptimo na linha z_i nas colunas correspondentes à base inicial de identidade $B^{O} = I$.



A matriz das restrições para o problema na forma padrão pode ser decomposta como: $[N^0 B^0] = [A I], B^0 = I.$

m variáveis de decisão duais que correspondem às m restrições primais

$$Y = (y_1, y_2, ..., y_m) = C_B B^{-1}$$

Quadro simplex óptimo

		$\mathbf{X}_{\mathbf{N}}$ o	X _B o	_ b
C _B	X _B	B-1No	B-1I	B-1b
	Zj	C _B B-1N ^o	C _B B-1	C _B B-1b
	c_j - z_j	$C_{N^{O}}$ - C_{B} B-1NO	$C_J - C_B B^{-1}$	
			variáveis de decisão duai	

Variáveis de Folga Duais e Quadro Primal Óptimo.

Relação 2: Os valores das variáveis de folga correspondentes à solução óptima dual encontram-se no quadro simplex óptimo e são os simétricos dos elementos da linha dos custos reduzidos nas colunas correspondentes às variáveis de decisão primais.

Às n variáveis de folga duais correspondem às n variáveis de decisão primais: $Y_s = (y_{m+1}, y_{m+2}, ..., y_{m+n})$

$$A^t Y \ge \mathbf{c} \Rightarrow A^t Y - I Y_s = \mathbf{c}$$

substituindo por $Y = C_B B^{-1}$

$$\Rightarrow A^t \mathbf{C}_{\mathbf{B}} \mathbf{B}^{-1} - I Y_s = \mathbf{c}$$

$$\Rightarrow | -Y_s = \mathbf{c} - A^t \mathbf{C}_{\mathbf{B}} \mathbf{B}^{-1} = \mathbf{c} - \mathbf{C}_{\mathbf{B}} \mathbf{B}^{-1} A$$

$$\Rightarrow -Y_s = C_{N^0} - C_B B^{-1} N^0$$

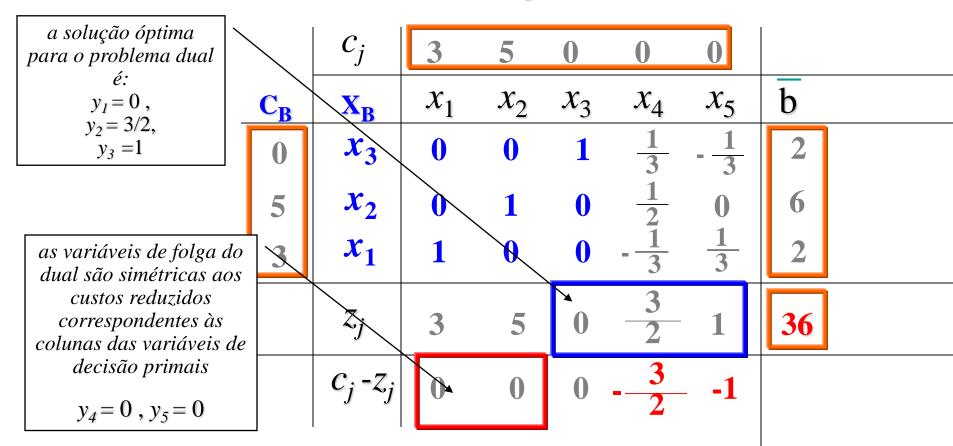
Quadro simplex óptimo

		$\mathbf{X_{N}}^{\mathbf{o}}$	X_B^0	b
$\mathbf{C}_{\mathbf{B}}$	X_B	B -1 N ⁰	B-1I	B-1b
	Zj	C _B B-1No	C _B B-1	C _B B-1b
	c_j - z_j	C_{N^0} - C_B B-1N0	$C_J - C_B B^{-1}$	
	veis de s duais		variáveis de decisão duais	,

(por hipótese as colunas de N^0 correspondem às colunas da matriz A)

Faculdade de Engenharia - Optimização

Quadro Óptimo do Exemplo Protótipo. Solução dual.



Solução Complementar.

Relação 3: A cada solução básica primal (SBP), admissível ou não admissível, corresponde-lhe uma solução básica dual (SBD), admissível ou não admissível, a que chamamos solução complementar.

Exemplo protótipo: 2º Quadro Simplex (a solução não é óptima)

X = (0,6,4,0,6) SBAP \Leftrightarrow solução complementar Y = (0,5/2,0,-3,0) - SBNAD

	c_j	3	5	0	0	0	
C _B	X _B	x_1	x_2	x_3	x_4	x_5	b
0	x_3	1	0	1	0	0	4
5	$ x_2 $	0	1	0	$\frac{1}{2}$	0	6
0	x_5	3	0	0	- <u>1</u>	1/	6
	Z_j	0	5	0	<u>5</u> 2	0	30
	c_j - z_j	3	0	0	- <u>5</u>	. 0	
	1		\ <u> </u>	as ve	uriávai	s da fo	loa duais

Variáveis de decisão duais: $y_1 = 0$, $y_2 = 5/2$, $y_3 = 0$

O facto de não ser um quadro óptimo para o primal, significa que a solução do dual não é admissível.

Solutina Du

Solução Dual Complementar. Critério de Admissibilidade.

Relação 4: Se num quadro simplex correspondente a uma solução básica primal (SBP), admissível ou não admissível, todos os custos reduzidos são não positivos então a solução dual complementar é admissível (SBAD).

Se todos os custos reduzidos são não positivos, i.e., c_j - $z_j \le 0$ verifica-se o critério de optimalidade para a solução primal

$$c_j - C_B B^{-1} P_j \le 0 \ \forall j, j = 1,2,...,n, n+1,...,n+m$$

$$Y^{t}=C_{B}B^{-1}$$

$$c_{j} - Y^{t}P_{j} \le 0 \quad \forall j, j = 1, 2, ..., n, n+1, ..., n+m$$

$$\mathbf{Y}^{\mathbf{t}}\mathbf{P}_{i} \geq \mathbf{c}_{i} \ \forall j$$
, $j = 1, 2, ..., n, n+1, ..., n+m$

$$Y^t A \ge c$$

(neste caso por hipótese A refere-se à matriz de restrições correspondente ao problema na forma padrão, já que são incluídas todas as colunas do quadro simplex)

$$A^t Y \ge c$$

Relação entre as Soluções dos Problemas Primal-Dual.

Relação 5: Se ambos os problemas têm soluções admissíveis (ambos são possíveis) então ambos têm óptimo finito e os correspondentes valores óptimos z* e w*coincidem

Relação 6: Se algum dos problemas não tem óptimo finito, então o outro não possui soluções admissíveis (é impossível).

PRIMAL	Possível K≠Ø	Impossível K=∅			
Possível K≠Ø	z*=w* ambos os problemas têm óptimo finito	w*→∞ o problema dual não tem óptimo finito			
Impossível K=∅	z*→∞ o problema primal não tem óptimo finito	Nenhum dos dois problemas têm soluções admissíveis			

Resolução do Problema

Podução à forma Dual. Exemplo protótipo

Redução à forma padrão: subtraiam-se duas variáveis de folga y_4 , y_5

Minimizar $w = 4y_1 + 12 y_2 + 18 y_3$ sujeito a

$$y_1 + 3y_3 \ge 3$$

 $2y_2 + 2y_3 \ge 5$

$$y_1, y_2, y_3 \ge 0$$

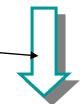
Minimizar $w = 4y_1 + 12y_2 + 18y_3$ sujeito a

$$y_1 + 3y_3 - y_4 = 3$$

 $2y_2 + 2y_3 - y_5 = 5$

$$y_1, y_2, y_3, y_4, y_5 \ge 0$$

Como não é possível determinar uma matriz identidade introduz-se uma variável artificial y₆ na restrição nº 2 (para a equação nº1 a variável y₁ pode ser tomada como variável básica inicial).



Minimizar $w = 4y_1 + 12y_2 + 18y_3$ sujeito a

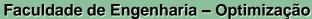
$$y_1 + 3y_3 - y_4 = 3$$

 $2y_2 + 2y_3 - y_5 + \mathbf{y_6} = 5$

$$\mathbf{A} = \left(\begin{array}{cccc} \mathbf{P}_{1} & \mathbf{P}_{2} & \mathbf{P}_{3} \, \mathbf{P}_{4} & \mathbf{P}_{5} & \mathbf{P}_{6} \\ \mathbf{1} & 0 & 3 & -1 & 0 & 0 \\ 0 & 2 & 2 & 0 & -1 & 1 \end{array}\right) \mathbf{B}^{0} = \left(\begin{array}{cccc} \mathbf{P}_{1} & \mathbf{P}_{6} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & 1 \end{array}\right) \quad \begin{array}{c} y_{1}, \ y_{2}, \ y_{3}, \ y_{4}, \ y_{5}, \ \mathbf{y}_{6} \geq 0 \\ \mathbf{y}_{6} - variável \ artificial \end{array}$$

$$y_1, y_{2}, y_3, y_4, y_5, \mathbf{y_6} \ge 0$$

 $\mathbf{y_6}$ - variável artificial



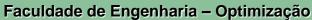
Exemplo protótipo. Resolução do Problema Dual. Método das duas fases: 1ª Fase.

Para aplicação da 1ª fase constrói-se o problema auxiliar:

Minimizar sujeito a	$w'=y_6$	
v	$+3y_3-y_4$	= 3
	$+2y_3 - y_5$	$+ y_6 = 5$
		> 0
y_{I} ,	y_2 , y_3 , y_4 , y_5 ,	$y_6 \ge 0$
y ₆ - 1	variável artific	cial

A SBA inicial para a 2^a fase é $Y^0=(3,5/2,0,0,0)$

2	c_i	0	0	0	0	0	1	
C _B	$Y_{\mathbf{B}}$	y_1	y_2	y_3	y_4	y_5	y_6	b
0	y_1	1	0	3	-1	0	0	3
1	y ₆	0	2	2	0	-1	1	5
	z_j	0	2	2	0	-1	1	5
	z_j - c_j	0	2	2	0	-1	0	
0	y_1	1	0	3	-1	0	0	3
0	y_2	0	1	1	0	-1/2	1/2	5/2
	Z_j	0	0	0	0	0	0	0
	z_j - c_j	0	0	0	0	0	-1	



Exemplo protótipo. Resolução do Problema Dual. Método das duas fases: 2ª Fase.

Minimizar
$$w = 4y_1 + 12y_2 + 18y_3$$

sujeito a
 $y_1 + 3y_3 - y_4 = 3$
 $2y_2 + 2y_3 - y_5 + y_6 = 5$
 $y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$

y₆- variável artificial

A solução óptima é $Y^*=(0,3/2,1,0,0)$

	$\begin{vmatrix} c_i \end{vmatrix}$	4	12	18	0	0	0	
C _B	$Y_{\mathbf{B}}$	y_1	y_2	y_3	<i>y</i> ₄ <i>y</i>	² 5	y ₆	b
4	y_1	1	0	3	-1 ()	0	3
12	y ₂	0	1	1	0 -1	/2	1/2	5/2
	z_j	4	12	24		-6	6	42
	z_j - c_j	0	0	6	-4	-6	6	
18	y ₃	1/3	0	1	-1/3	0	0	1
12	y ₂	-1/3	1	0	1/3	-1/2	1/2	3/2
	z_j	2	12	18	-2	-6	6	36
	z_j - c_j	-2	0	0	-2	-6		

	L	Prim	al: >	(* = (2,6,2	,0,0)	z *=	= w*=3	6 Du	ıal:	Y* =	(0,3	/2,1,0),0)		
	c_{j}	3	5	0	0	0			c_i	4	12	18	0	0	0	
$\mathbf{C}_{\mathbf{B}}$	X_B	x_1	$\boldsymbol{x_2}$	x_3	x_4	x_5	$\overline{\mathbf{b}}$	$\mathbf{C_{R}}^{-}$	YB	<i>y</i> ₁	y ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	y ₆	b
0	x_3	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2	18	y ₃	1/3	0	1	-1/3	0		1
5	$\boldsymbol{x_2}$	0	1	0	1 2	0	6	12	$\begin{vmatrix} y_3 \\ y_2 \end{vmatrix}$	-1/3		0	1/3		1/2	3/2
3	x_1	1	0	0	- 1/3	3	2		J Z	2	12	18	-2	-6	6	136
	Z_j	3	5	0	$\frac{3}{2}$	1	36		$Z_i - C_i$	-2	0	0	-2	-6	* •	30
	c_j - z_j	0	0	0	- 3 2	-1									1	

a solução óptima para o dual é: $y_1 = 0$, $y_2 = 3/2$, $y_3 = 1$

as variáveis de folga do dual $y_4 = 0$, $y_5 = 0$

Prof. Doutor Engo Jorge Nhambiu

a solução óptima para o primal, $x_1 = 2$, $x_2 = 6$, encontram-se na linha z_j nas colunas correspondentes à matriz inicial identidade, i.e.,nas colunas correspondentes a y_1 e à variável artificial y_6

duais: $x_3 = 2, x_4 = 0, x_5 = 0$

as variáveis de folga

do primal são

simétricas aos custos

reduzidos das colunas correspondentes às

variáveis de decisão

Exemplo Protótipo: Soluções complementares

Primal:
$$X^* = (2,6,2,0,0)$$

$$z^*=w^*=36$$
 Qual: $Y^*=(0,3/2,1,0,0)$

Soluções complementares

SBAP
$$X^0 = (0,0,4,12,18), z^0=0$$

SBNAD
$$Y^0 = (0,0,0,-3,-5), w^0=0$$

SBAP
$$X^1 = (0,6,4,0,6), z^1=30$$

SBNAD
$$Y^1 = (0,5/2,0,-3,0), w^1=30$$

SBAP
$$X^2 = (2,6,2,0,0), z^2 = 36$$

SBAD
$$Y^2 = (0,3/2,1,0,0), w^2 = 36$$

Restrições do Problema Primal em Notação Vectorial

Considere a matriz A do problema primal representada por m linhas P^i :

$$AX = \begin{pmatrix} \mathbf{P}^{1} \rightarrow a_{11} & a_{12} & \dots & a_{1n} \\ \mathbf{P}^{2} \rightarrow a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & & \\ \mathbf{P}^{i} \rightarrow \mathbf{a_{i1}} & \mathbf{a_{i2}} & \dots & \mathbf{a_{in}} \\ \mathbf{P}^{m} \rightarrow a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{J} \\ x_{n} \end{pmatrix} \leq \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{i} \\ b_{m} \end{pmatrix}$$

então uma restrição i do problema primal pode ser representada como:

$$P^i X \leq b_i$$

Restrições do Problema Dual em Notação Vectorial.

Considere a matriz A do problema primal representada por n colunas P_i :

$$A^{t}Y = Y^{t}A = \left(\begin{array}{c} y_{1} \ y_{2} \dots y_{i} \dots y_{m} \end{array}\right) \left(\begin{array}{c} P_{1} \ \dots P_{j} \dots P_{n} \\ a_{11} \dots a_{1j} \dots a_{1n} \\ a_{21} \dots a_{2j} \dots a_{2n} \end{array}\right) \geq \left(\begin{array}{c} c_{1} \\ c_{2} \\ \vdots \\ c_{j} \\ \vdots \\ c_{n} \end{array}\right)$$

então uma restrição j do problema dual pode ser representada como:

$$Y^t P_j \geq c_j$$
 $j = 1, 2, ..., n$
Prof. Doutor Engo Jorge Nhambiu

Restrições Saturadas e Não Saturadas.

Uma restrição encontra-se **saturada** se verifica a igualdade.

• se $P^iX = b_i$ para o problema primal.

ightharpoonup se $Y^tP_i=c_i$ para o problema dual

Caso contrário a restrição encontra-se

não saturada

- se $P^iX < b_i$ para o problema primal.
- se $Y^tP_i > c_i$ para o problema dual

Se X* e Y* são soluções óptimas para o primal (P) e dual(D), respectivamente, então verificam a seguinte propriedade designada como *propriedade dos desvios* complementares ou complementaridade das slacks:

- 1°. Se uma variável de decisão de qualquer dos problemas for não nula na solução óptima, então, no outro problema a restrição associada a essa variável encontra-se saturada, i.e., a variável de folga correspondente é nula.
- 2º. Se uma restrição de qualquer dos problemas não se encontra saturada na solução óptima desse problema (se uma variável de folga é positiva) então, no outro problema, a variável de decisão associada a essa restrição é nula.

Propriedade dos Desvios...

Em síntese a propriedade dos desvios complementares pode resumir-se pela seguintes expressões:

I.
$$x_j^* (Y^{*t} P_j - c_j) = 0, \forall j = 1,...n$$

 $x_j^* \times y_{m+j}^* = 0, \forall j = 1,...,n$

é nulo o produto da j-ésima variável de decisão do primal pela j-ésima variável de folga do dual

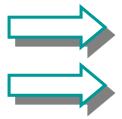
II.
$$y_i^* (b_i - P_i X^*) = 0, \forall i = 1,...m$$

 $y_j^* \times x_{n+i}^* = 0, \forall i = 1,...,m$

é nulo o produto da i-ésima variável de decisão do dual pela i-ésima variável de folga do primal.

Propriedade dos desvios...

 I. Se a variável de decisão do primal é positiva então a variável de folga correspondente do dual é nula.



a restrição do problema dual associada a essa variável encontrase saturada

a *variável de folga* do problema *dual* associada a essa restrição é *nula*

Propriedade dos desvios...

II. Se a variável de folga do dual é positiva então a variável de decisão correspondente do primal é nula.

$$y_{m+j}^* > 0$$

$$x_j^* = 0$$

$$a \text{ rest}$$

$$associated associated asociated associated associated associated associated associated as$$

a restrição do problema dual associada encontra-se não saturada

$$a_{1j}y_1^* + a_{2j}y_2^* + ... + a_{mj}y_m^* > c_j$$

$$Y^{*t}P_j > C_j$$

$$Y^{*t}P_j - C_j > 0$$

pela propriedade de desvios complementares

$$x_{j}^{*}(Y^{*t}P_{j}-c_{j})=0, \forall j=1,...,n$$

$$x_j^* = 0$$

Propriedade dos desvios...

III. Se a variável de decisão do dual é positiva então a variável de folga correspondente do primal é nula.

$$y_i^* > 0$$

IV. Se a variável de folga do primal é positiva então a variável de decisão correspondente do dual é nula.

$$x_{m+i}^* > 0$$

$$y_i^* = 0$$

Propriedade dos Desvios Complementares. Conclusões.

A variáveis de decisão primais positivas correspondem restrições duais saturadas (i.e.,variáveis de folga duais nulas, slacks nulas);

A restrições duais não saturadas (i.e, variáveis de folga duais positivas, slacks positivas) correspondem variáveis de decisão primais nulas;

e reciprocamente:

A variáveis de decisão duais positivas correspondem restrições primais saturadas (i.e, variáveis de folga primais nulas, slacks nulas);

A restrições primais não saturadas (i.e, variáveis de folga primais positivas, slack positivo) correspondem variáveis de decisão duais nulas.

ropriedade dos Desvios Complementares. Exemplo Protótipo.

Primal: $X^* = (2,6,2,0,0)$

Dual: $Y^* = (0,3/2,1,0,0)$

variáveis de decisão

variáveis de folga

os produtos das variáveis de decisão do primal pelas correspondentes variáveis de folga do dual são nulos

$$x_1 = 2$$

$$y_4 = 0$$

$$x_2 = 6$$

$$y_5 = 0$$

variáveis de folga

variáveis de decisão

os produtos das variáveis de decisão do dual pelas correspondentes variáveis de folga do primal são nulos

$$x_3 = 2$$

$$y_1 = 0$$

$$x_4 = 0$$

$$y_2 = 3/2$$

$$x_5 = 0$$

$$y_3 = 1$$
Prof. Doutor Eng^o Jorge Nhamblu

Aplicando Dualidade e as Propriedades de Desvios Complementares para resolver o Problema Primal. Como o problema dual é um problema com duas

Como o problema dual e um problema com duas <u>Primal de Minimização</u> variáveis pode ser resolvido graficamente.

Minimizar
$$z=2x_1+3x_2+5x_3+2x_4+3x_5$$

sujeito a

$$x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4$$

2 x_1 - 2 x_2 + 3 x_3 + x_4 + x_5 ≥ 3

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Dual de Maximização

$$\begin{aligned} \textit{Maximizar } w &= 4 \ y_1 + 3 \ y_2 \\ \textit{sujeito } a \end{aligned}$$

$$y_{1} + 2y_{2} \leq 2$$

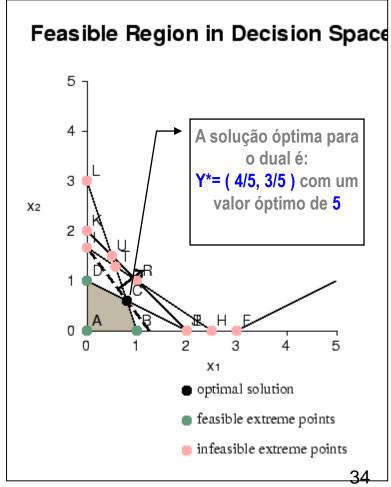
$$y_{1} - 2y_{2} \leq 3$$

$$2y_{1} + 3y_{2} \leq 5$$

$$y_{1} + y_{2} \leq 2$$

$$3y_{1} + y_{2} \leq 3$$

$$y_1, y_2 \ge 0$$



Faculdade de Engenharia - Optimização

Utilizando o dual e as propriedades....

Y*= (4/5,3/5) é a solução óptima do problema dual obtida graficamente

1º: Pela propriedade dos desvios complementares se a variável de decisão do dual é positiva então a variável de folga correspondente do primal é nula.

$$y_1 = 4/5$$
 prop.desvios $x_6 = 0$ $y_2 = 3/5$ prop.desvios $x_7 = 0$

2º: Calcular as variáveis de folga duais, substituindo os valores de $y_1 = 4/5$, $y_2 = 3/5$ nas restrições duais.

$$y_{3} = 2 - y_{1} - 2y_{2}$$

$$\Rightarrow y_{3} = 0$$

$$\Rightarrow y_{3} = 0$$

$$\Rightarrow y_{3} = 0$$

$$\Rightarrow y_{3} = 0$$

$$\Rightarrow y_{4} = 3 - y_{1} + 2y_{2}$$

$$\Rightarrow y_{5} = 5 - 2y_{1} - 3y_{2}$$

$$\Rightarrow y_{5} = 5 - 8/5 - 9/5$$

$$\Rightarrow y_{5} = 8/5$$

$$\Rightarrow y_{6} = 3/5$$

$$\Rightarrow y_{7} = 0$$

$$\Rightarrow y_$$

Faculdade de Engenharia - Optimização

Utilizando o dual é as propriedades...

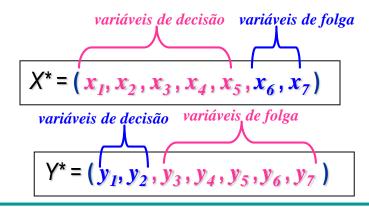
Minimizar
$$z = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

sujeito a

$$x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4$$

2 x_1 - 2 x_2 + 3 x_3 + x_4 + x_5 ≥ 3

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$



30: Calcular $x_1 \ge 0$, $x_5 \ge 0$ substituindo $x_2 = x_3 = x_4 = 0$ nas restrições primais

$$x_1 + x_2 + 2x_3 + x_4 + 3x_5 - x_6 = 4$$

$$2x_1 - 2x_2 + 3x_3 + x_4 + x_5 - x_7 = 3$$

substituindo por

$$x_2 = x_3 = x_4 = x_6 = 0$$

substituindo por

$$\underset{x_2=x_3=x_4=x_6=0}{\Longrightarrow}$$

 $x_1 + 3x_5 = 4$

$$2x_1 + x_5 = 3$$

 $x_{i} = 1$

 $x_5 = 1$

A solução primal óptima é
$$X^* = (\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Os produtos das variáveis de decisão primais (duais) com as correspondentes variáveis de folga duais (primais) são nulos