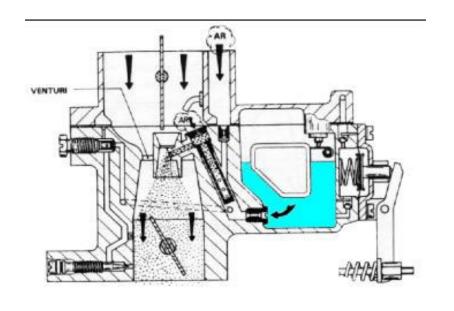
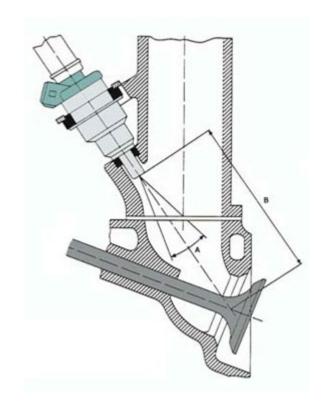
Motores Térmicos

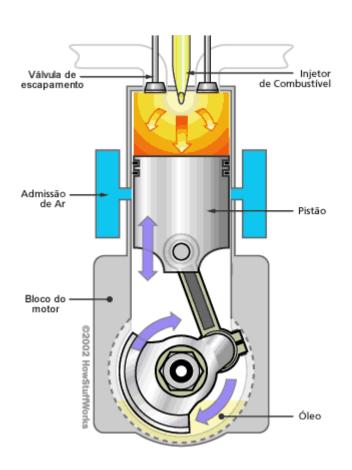
8° Semestre 4° ano

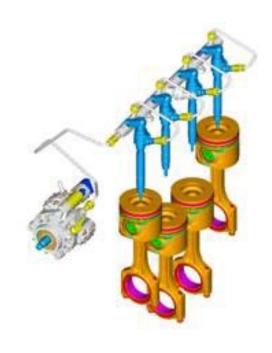

Aula 4 – Tipos de Combustíveis e Combustão


- Caracterização das Chamas;
- Modelo de Gás ideal;
- Composição do ar e dos Combustíveis;
- Combustão;
- Propriedades dos Gases de Escape.

- A combustão da mistura ar-combustível no interior do cilindro é um dos processos que controla a potência, rendimento e as emissões dos motores.
- O processo de combustão é diferente nos dois tipos principais de motores:
 - No motor do **ciclo Otto** o combustível e o ar são misturados no sistema de admissão, depois esta mistura é comprimida e por meio de uma descarga eléctrica inicia-se o processo de combustão. A chama desenvolve-se desde o núcleo criado pela descarga eléctrica e propaga-se pelo cilindro até as paredes da câmara de combustão. Nas paredes a chama é extinta sob a forma de transmissão de calor e a destruição dos espécimes activos nas paredes torna-se o processo mais dominante.

Carburação


Injecção



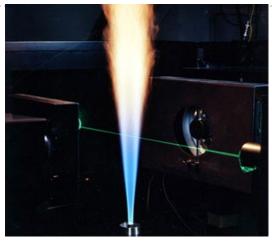
Nos motores que funcionam segundo o ciclo Diesel o combustível é injectado no cilindro onde se encontra o ar a altas pressão e temperatura, perto do fim do tempo de compressão. A auto-ignição de partes da mistura em formação a custa do combustível já injectado e vaporizado com o ar quente faz começar o processo de combustão, que se propaga rapidamente. A queima assim procede-se a medida que o combustível e o ar se misturam em proporções apropriadas para a combustão ter lugar.

▶ Injecção convencional

Injecção common rail

O processo de combustão é uma reacção rápida, isotérmica da fase gasosa (onde o oxigénio é geralmente um dos reagentes). A chama é uma reacção de combustão que se pode propagar subsonicamente através do espaço. A estrutura da chama não depende de ser a chama a mover-se em relação ao observador ou esta estar estática e o gás mover-se em relação a chama. A existência de movimento da chama implica que a reacção esteja confinada a zona que é pequena em espessura, quando comparada com a dimensão do aparato, no caso concreto da câmara de combustão do motor. A zona de reacção é geralmente chamada frente de chama.

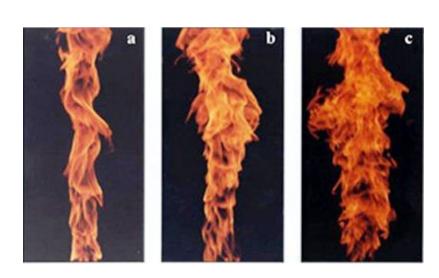
As chamas podem ser classificadas em função com a composição dos reagentes quando entram na zona de reacção. Se o combustível e o oxidante estiverem os dois bem misturados, a chama é designada prémisturada. Se os reagentes não estiverem pré-misturados e tiverem de se misturar no local onde a reacção tem lugar a chama é chamada chama de difusão porque a mistura é acompanhada por um processo de difusão;



Chama Pré-Misturada

Chamas de Difusão

Outra classificação das chamas tem a ver com a característica básica do fluxo de gás ao longo da zona de reacção: que pode ser laminar ou turbulenta. A característica deste tipo de chama é dada pelo número de Reynolds.



Chama laminar

Chama turbulenta

A última classificação que aqui se aborda prende-se com o facto da chama ser permanente ou não permanente. A distinção aqui depende de quando a estrutura da chama e o seu movimento variam com o tempo.

Chama não permanente

Chama permanente

4.2 Modelo de Gás Ideal

As espécimes de gases que constituem o fluído de trabalho em motores de combustão interna são geralmente tratadas como gases ideais. Os diversos parâmetros dos gases ideais encontram-se ligados pela equação de estado da seguinte forma:

$$pV = mRT = m\frac{\tilde{R}}{M}T = n\tilde{R}T$$
 (4.1)

Onde p é a pressão, V o volume, m a massa de gás, T a temperatura, R a constante universal dos gases, M a massa molar e n o número de moles.

Normalmente, nos motores o combustível é queimado com ar. O ar seco é uma mistura de gases que representam a seguinte composição percentual:

- □ oxigénio = 20,99;
- \square nitrogénio = 78,03;
- \Box árgon = 0,94;
- gases raros: néon, hélio, e crípton;
- □ dióxido de carbono = 0,03 e
- □ hidrogénio = 0,01.

Para muitos dos cálculos é suficientemente preciso considerar que o ar seco é composto por 21 por cento de oxigénio e 79 por cento de gases inertes na forma de nitrogénio.

Tabela 4.1 Propriedades do ar

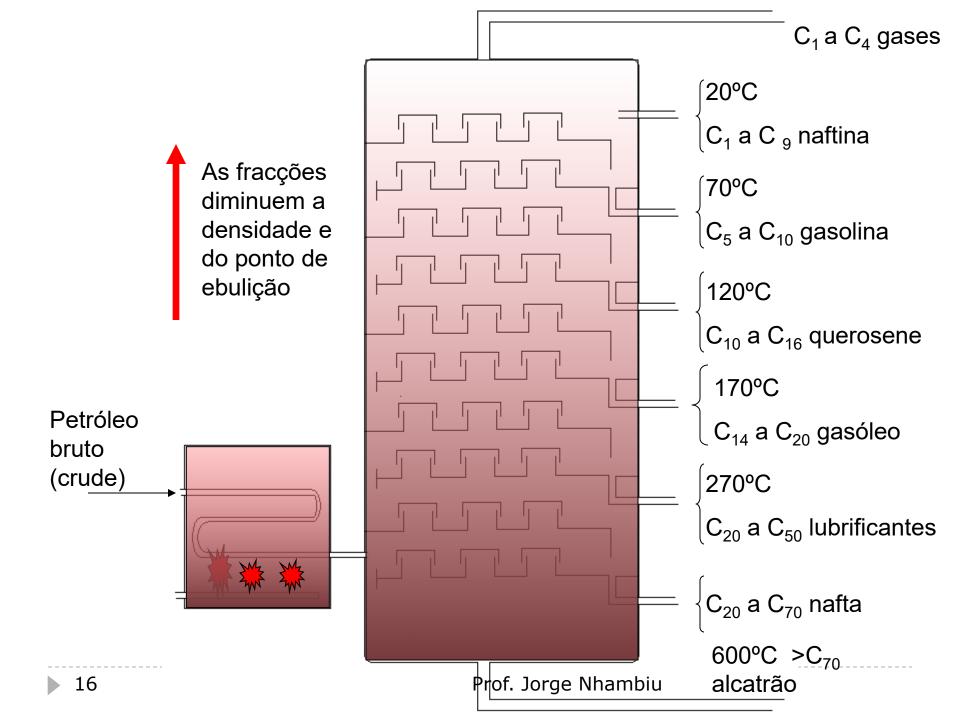
Gás	Análise volumétrica	Fracção Molar	Peso Molecular	Peso relativo
O_2	20,99	0,2095	32,00	6,717
N ₂	78,03	0,7808	28,016	21,861
A	0,94	0,0093	39,944	0,376
CO_2	0,03	0,0003	44,003	0,013
H_2	0,01	0,0001	2,016	
Total	100,00	100	•••••	$28,967 = M_{ar}$

No processo de combustão o constituinte activo é o oxigénio, o nitrogénio aparente considera-se inerte. Daí para cada mole de oxigénio fornecido, 3,764 moles de nitrogénio aparente acompanham-no na reacção:

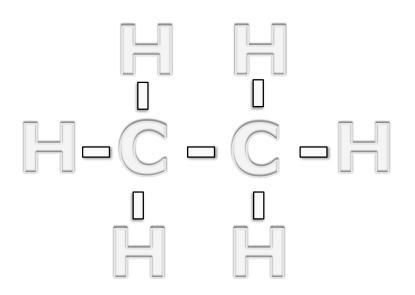
$$\frac{79,01}{20,99} = 3,764 \frac{moles \ de \ N_2 \ aparente}{moles \ de \ Oxigénio}$$
(4.2)

O petróleo é constituído por centenas de substâncias químicas, do metano ao asfalto. Sua composição é bastante variada:

Hidrocarbonetos: 83 a 87% em carbono e 11 a 15% de hidrogénio

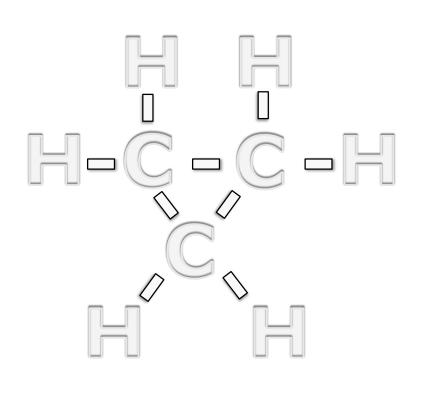

Nitrogénio: 0 a 0,5%

Enxofre: 0 a 6%


Oxigénio: 0 a 3,5%

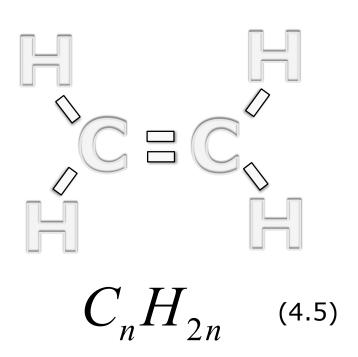
Compostos são normalmente divididos em:

- ▶ Parafinas: hidrocarbonetos lineares de cadeia aberta C_nH_{2n+2}
- ▶ Isoparafinas: hidrocarbonetos ramificados de cadeia aberta C_nH_{2n+2}
- Olefinas: hidrocarbonetos não saturados, de cadeia aberta, C_nH_{2n}
- Naftenos: hidrocarbonetos de cadeia cíclica e saturada, C_nH_{2n}
- Aromáticos: hidrocarbonetos com anéis benzênicos, de cadeia C_nH_{2n-6}

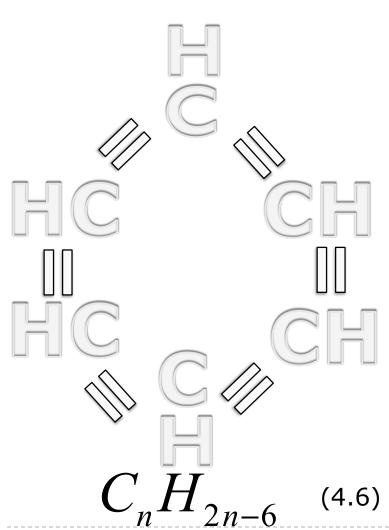

4.3.1 Alcanos ou Parafinas

$$C_n H_{2n+2}$$
 (4.3)

Os alcanos, também chamados hidrocarbonetos parafínicos ou parafinas, são compostos constituídos exclusivamente por carbono e hidrogénio e formam uma série homóloga, cujo primeiro membro é o metano (CH₄). A estrutura física dos alcanos é de cadeia carbónica acíclica (alifática), saturada e homogênea, ou seja, cadeia aberta que apresentam simples ligações entre átomos de carbono.


4.3.2 Cicloparafinas

 $C_n H_{2n}$ (4.4)


As Cicloparafinas apresentam ligações simples e não saturadas de anéis de hidrocarbonatos. Ligações não saturadas, pois podese quebrar a cadeia e adicionar uma molécula de Hidrogénio.

4.3.3 Alquenos ou Olefinas

Distinguem-se por ter uma ligação dupla na posição primária ou alfa (α). Esta localização de uma liga dupla reforça a reactividade do composto e os faz serem úteis para um grande número de aplicações.

4.3.4 Aromaticos

Hidrocarbonetos aromáticos são geralmente compostos caracterizados por apresentar como cadeia principal um ou vários anéis benzênicos, sendo a "aromaticidade" melhor definida como uma "dificuldade" das ligações duplas de um composto reagirem em reacções típicas de alcenos, devido a uma deslocalização destas na molécula.

Prof. Jorge Nhambiu

4.3.5 Alcinos ou Acetilenos

$$C_n H_{2n-2}$$
 (4.7)

- Os **alcinos** são os hidrocarbonetos acíclicos que contêm uma tripla ligação; consequentemente a sua fórmula é do tipo C_nH_{2n-2} , sendo n maior ou igual a dois. São tradicionalmente conhecidos como **acetilenos**, embora o nome acetileno seja usado para referenciar o membro mais simples da série, conhecido oficialmente como etino.
- Os alcinos caracterizam-se por terem uma ligação tripla carbono-carbono. Tanto os alcenos como os alcinos denominam-se hidrocarbonetos insaturados, pelo facto de terem ligações duplas e triplas. As propriedades físicas dos alcenos e dos alcinos são semelhantes à dos alcanos.

4.3.6 Álcoois

$$C_n H_{2n+1} OH$$
 (4.8)

Nestes componentes orgânicos um grupo hidroxil (-OH) é substituído por um átomo de hidrogénio. Dai o metano transformar-se em metanol CH₃OH.

Poder anti-detonante (Índice de Octanas) - é
 bastante importante para a classificação de
 combustíveis utilizados em motores a carburador

O número de octanas é a medida que caracteriza o poder anti-detonante.

O número de octanas "OZ" indica que o poder anti-detonante dum combustível num motor de ensaio corresponde a uma mistura de **a** partes volumétricas de iso-octana

$$CH_3C(CH_3)_2CH_2(CH_3)_2$$
 (4.9)

e de (100-a) partes volumétricas de heptano

$$CH_{3}(CH_{2})_{5}CH_{3}$$
 (4.10)

Pode-se aumentar o poder anti-detonante com aditivos que contenham chumbo, que é o caso do tetra-etilato de chumbo (até 0,05% do volume)

A reacção de ignição - é um parâmetro importante a ter em conta quando se trata da classificação de combustível do tipo gasóleo. Esta reacção de ignição é medida pelo número de Cetano "CaZ".

O Número de Cetano representa o processo de ignição do combustível gasóleo num motor de ensaio, combustível este composto por **a** partes volumétricas de Cetano

$$C_{16}H_{34}$$
 (4.11)

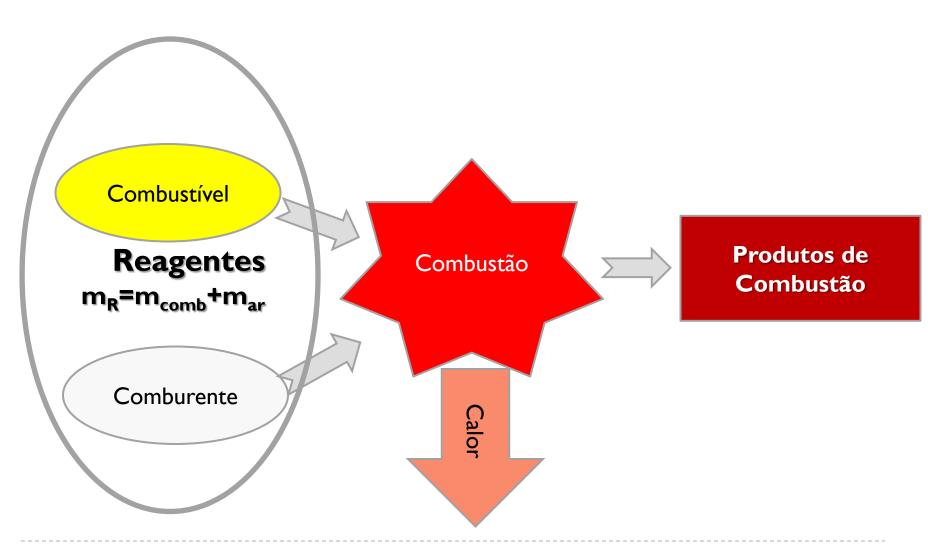
cuja reacção de ignição é 100 e **(100-a)** partes volumétricas de metilnaftaleno

$$CH_3C_{10}H_7$$
 (4.12)

cuja reacção de ignição é zero (0)

- Comportamento de ebulição − é uma característica importante dos combustíveis. Para os combustíveis não existe um ponto de ebulição, mas sim uma linha de ebulição porque eles são misturas de vários elementos.
 - Pequena pressão de ebulição provoca perdas de combustível conduz ao perigo de formação de bolhas de vapor de combustível;
 - Grande pressão de ebulição provoca um mau comportamento ao arranque.

- ▶ Ponto de inflamação é a temperatura a que os vapores de combustível se inflamam ao aproximar-se de uma fonte de ignição.
- Ponto de combustão é o ponto em que os vapores combustíveis começam a arder depois de se auto-inflamarem.


- ▶ Ponto de ignição é a temperatura a qual resulta uma auto ignição da mistura combustível
- ▶ Ponto de solidificação é a temperatura a qual no combustível a parte líquida e os componentes sólidos se separam.

4.5 Combustão

A química da combustão é um problema de engenharia prático com muito significado teórico. Os engenheiros têm de estar cientes das várias teorias de combustão já avançadas, de forma a explicar os fenómenos que surgem nos motores de combustão interna.

4.5 Combustão

4.5 Combustão-Equações da combustão

Considere-se a reacção que surge entre o carbono e o oxigénio para dar origem ao dióxido de carbono:

$$C + O_2 \to CO_2 \tag{4.13}$$

Esta equação implica que:

I molécula de C + I molécula de $O_2 \rightarrow I$ molécula de CO_2

A massa relativa da mistura e dos produtos é dada pelo seu peso molecular:

daí:

$$12 \text{ kg C} + 32 \text{ kg O}_2 = 44 \text{ kg CO}_2$$

ou por outra:

I mole C + I mole $O_2 \rightarrow I$ mole CO_2

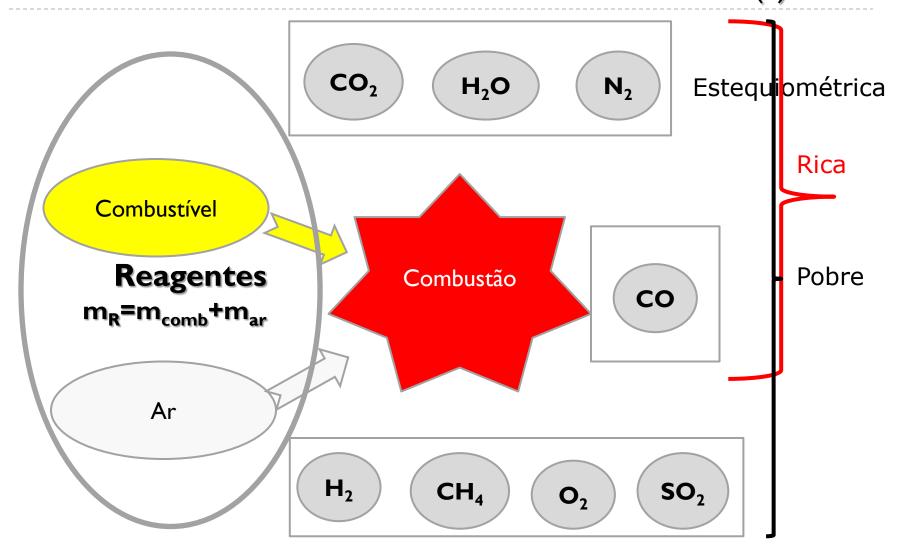
4.5 Combustão - Elementos combustíveis nos combustíveis

Os elementos combustíveis nos combustíveis são predominantemente o carbono e o hidrogénio, pequenas quantidades de enxofre compõe a outra parte dos elementos. Os combustíveis líquidos são misturas complexas de hidrocarbonetos, contudo para os cálculos de combustão a gasolina e o gasóleo são designados pela formula molecular (C_8H_{17})

4.5 Combustão - Elementos combustíveis nos combustíveis

- Exemplo: Determinar a fórmula equivalente de um combustível hidrocarboneto com 85% de carbono e 15% de hidrogénio.
- Solução: A fórmula terá os seguinte aspecto C_aH_b e pela análise dos pesos moleculares

$$(12) a = 85$$


$$a = 7.08$$

$$(1) b = 15$$

$$b = 15$$

Daí o resultado será $C_{7,08}H_{15}$. Para se obter números redondos multiplica-se tudo por 1,13 e obtém-se: C_8H_{17}

4.5 Combustão - Combustão com o ar (I)

4.5 Combustão - Combustão com o ar (II)

Em muitos casos a combustão dá-se com o ar atmosférico e não com oxigénio puro. O nitrogénio e outros gases presentes no ar meramente diluem a concentração do oxigénio e geralmente aparecem nos produtos de combustão sem sofrerem alterações na sua forma inicial.

4.5 Combustão - Combustão com o ar (III)

Por exemplo na combustão do carbono e oxigénio puro:

$$C + O_2 \rightarrow CO_2 \tag{4.14}$$

No caso da combustão dar-se com o ar:

$$C+O_2 + 3,76N_2 \rightarrow CO_2 + 3,76N_2$$
 (4.15)

multiplicando cada termo pelo seu peso molecular, obtém-se:

$$12kgC + 32kgO_2 + 106kgN_2 = 44kgCO_2 + 106kgN_2$$

4.5 Combustão - Combustão com o ar (IV)

Os passos para balancear as equações químicas podem ser ilustrados pela combustão completa de C_8H_{18} com ar seco.

- Primeiro faz-se o balanço do carbono do seguinte modo: $(C_{mistura} = C_{produtos})$
 - \Box $C_8 \rightarrow 8CO_2$
- depois o balanço do hidrogénio

$$(H_{mistura} = H_{produtos})$$

- \Box $H_{18} \rightarrow 9H_2O$
- seguido pelo balanço de oxigénio

$$(O_{produtos} = O_{mistura})$$

$$\square \quad 12,5 \text{ O}_2 \rightarrow 8\text{CO}_2 + 9\text{H}_2\text{O}$$

4.5 Combustão - Combustão com o ar (V)

•e finalmente o balanço do Nitrogénio $(N_2 = 3,76 O_2)$

$$12,5 (3,76) N_2 \rightarrow 47 N_2$$

A equação da combustão completa é

$$C_8H_{18} + 12\frac{1}{2}O_2 + 47N_2 \rightarrow 8CO_2 + 9H_2O + 47N_2$$
 (4.16)

O RAC, relação ar combustível, é a relação entre a massa do ar e a de combustível que participam na combustão:

$$RAC_{s} = \frac{massa_{ar}}{massa_{comb}} = \frac{(12\frac{1}{2} + 47)(29)}{8.12 + 18.1} = 15,1 \frac{kg_{ar}}{kg_{comb}}$$
(4.17)

15 kg ar por 1 kg de combustível é a relação estequiométrica para o combustível C_8H_{18}

4.5 Combustão - Combustão com o ar (VI)

Geralmente uma combustão envolve ar insuficiente ou excessivo em relação à quantidade teórica. Assumido que foi fornecido mais 25 por cento de ar em relação ao valor teórico a reacção toma o seguinte aspecto:

$$C_8H_{18} + \frac{5}{4}(12\frac{1}{2}O_2 + 47N_2) \rightarrow 8CO_2 + 9H_2O + 3,12O_2 + 58,75N_2$$
 (4.21)

Quando o combustível contém oxigénio o procedimento é o mesmo que o anterior, excepto que o oxigénio do combustível deve ser diminuído do oxigénio a ser fornecido com o ar. A combustão completa do álcool etílico é dada por:

$$C_2H_3OH_3 + 3O_2 + 3(3,76)N_2 \rightarrow 2CO_2 + 3H_2O + 11,28N_2$$
 (4.22)

E a relação ar - combustível passa a ser:

$$RAC = \frac{414}{46} = 9,0$$

4.5.1 Relação Ar - Combustível

O RAC pode ser:

- RAC_s relação ar combustível estequiométrica
- Quando a relação entre as massas do ar e a de combustível são as quimicamente correctas para que haja a combustão.
- RAC_r relação ar combustível real
- Quando a relação é entre as massas de ar e de combustível medidas.

4.5.1 Relação Ar - Combustível

O coeficiente de excesso de ar λ , é a razão entre a relação ar combustível real e a estequiométrica, como segue na expressão:

$$\lambda = \frac{RAC_r}{RAC_s} \tag{4.20}$$

- O coeficiente λ pode ser:
 - \square $\lambda = I$ mistura estequiométrica
 - \Box λ < I mistura rica
 - \square $\lambda > 1 mistura pobre$

4.5.1 Relação Ar - Combustível

Considerando a combustão completa dum hidrocarboneto no geral com uma composição C_aH_b com ar, a fórmula para a combustão completa é dada por:

$$C_a H_b + \left(a + \frac{b}{4}\right) \left(O_2 + 3,764N_2\right) = aCO_2 + \frac{b}{2}H_2O + 3,764\left(a + \frac{b}{4}\right)N_2$$
 (4.18)

Considerando a combustão completa dum hidrocarboneto no geral com uma composição C_aH_b com ar, a fórmula a Relação Ar Combustível é dada por:

$$RAC_{s} = \frac{(1+y/4)(32+3,76\times28)}{12+1\times y} = \frac{34,32(4+y)}{12+1\times y}$$
(4.19)

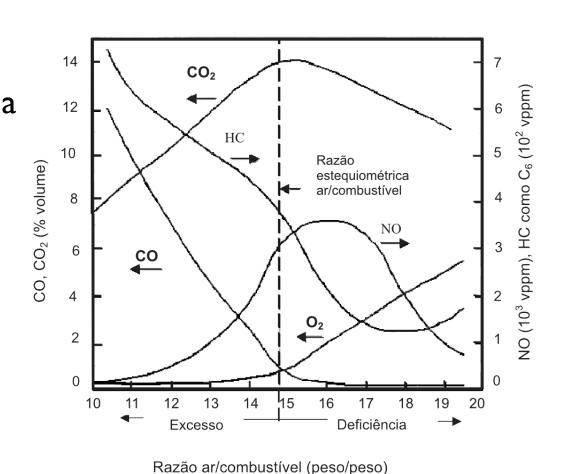
 \rightarrow Em que y = b/a

4.5.2 Mistura Estequiométrica

A mistura estequiométrica é a mistura onde a relação ar + combustível é a ideal para que ocorra uma combustão completa, seria a razão da mistura com a qual um motor apresentaria a sua potência máxima, porém na prática, isto não acontece, sendo necessário o uso de uma mistura com RAC menor que o estequiométrico. O uso desta mistura em excesso de combustível, com a qual obtem-se a máxima potência, se faz necessário, por causa da vaporização da mistura e dos gases residuais da combustão do ciclo anterior que se juntam a esta nova mistura.

4.5.3 Mistura Rica

O inconveniente da mistura rica é que proporciona combustão incompleta, devido a falta de oxigênio. Assim, haverá formação de depósitos de carbono na câmara, nos segmentos, nas válvulas e nos eletrodos da vela, prejudicando assim o funcionamento do motor. Uma outra desvantagem é o aumento no consumo de combustível do motor. A vantagem é que, com a mistura rica, a temperatura no interior da câmara de combustível é mais baixa.


4.5.4 Mistura Pobre

Quando uma mistura pobre entra em combustão, devido ao excesso de oxigênio, a temperatura da chama será muito alta. Esta elevação de temperatura, poderá provocar um superaquecimento nos órgãos do motor, principalmente na válvula de escape, podendo inclusive provocar a sua queima.

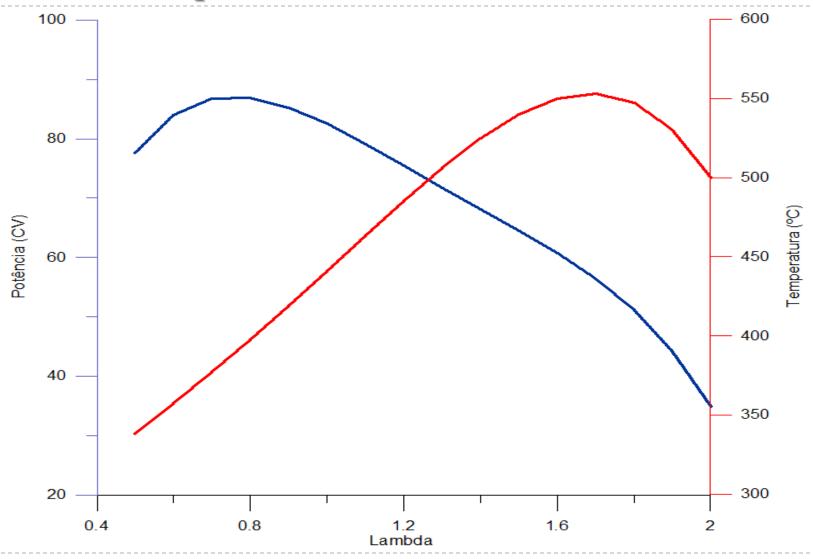
4.5.5 Mistura no motor do Ciclo Diesel

► Historicamente, os motores diesel têm sido, em geral, de uma mistura pobre isto é com excesso de ar, para garantir que se forme a mistura no interior da câmara e que todo o combustível seja queimado durante o ciclo

http://qnint.sbq.org.br

4.5.5 Mistura no motor do Ciclo Diesel

Concentração dos poluentes nos gases de Escape					
Regime de operação	Combustível	Monoxido de carbono %	Óxido de Nitrogênio ppm	Hidrocarbonetos ppm	
Manakalanda	Diesel	0,0	59	390	
Marcha lenta	Gasolina	11,7	33	4830	
A solowe são	Diesel	0,05	849	210	
Aceleração	Gasolina	3,0	1347	960	
Compains	Diesel	0,0	237	90	
Cruzeiro	Gasolina	3,4	653	320	
Desaceleração	Diesel	0,0	30	330	
	Gasolina	5,5	18	16750	


4.5.6 Temperatura e Potência vs Mistura

O sistema de alimentação dos motors Otto é projetado para que forneça uma mistura rica ($\lambda \cong 0.86$) quando o motor funciona na máxima potência e uma mistura pobre ($\lambda \cong 1.1$) para a velocidade de cruzeiro.

Quando o motor está em regime de baixa rotação, partes dos gases de escape retrocede ao coletor de admissão no momento do cruzamento das válvulas. Assim, a baixas rotação os gases de escape diluem a mistura fresca que é admitida. Para contornar o efeito enfraquecedor dos gases de combustão, a mistura deve ser enriquecida, a fim de não prejudicar o funcionamento do motor.

A temperatura dos gases de escapamento também estão relacionadas à razão ar-combustível da mistura. Pode-se verificar, que com o empobrecimento da mistura, a temperatura dos gases vai subindo até atingir um ponto máximo e a partir daí, começa a diminuir.

4.5.6 Temperatura e Potência vs Mistura

4.6 Cálculo das Emissões

O cálculo das emissões em motores de combustão interna pode ser feito de várias maneiras, dependendo do nível de detalhe e da disponibilidade de dados. As principais fórmulas usadas envolvem balanço de massa, estequiometria da combustão e factores de emissão.

Para um combustível genérico com composição química $C_xH_yO_zN_w$, a reacção de combustão completa com ar pode ser expressa como:

$$C_x H_y O_z N_w + O_2 + N_2 \rightarrow CO_2 + H_2 O + NO_x + CO + HC + PM + O_2 + N_2$$
 (4.23)

Onde:

CO – é a emissão de Monóxido de Carbono

HC- é a emissão dos Hidrocarbonetos não queimados

PM- são os particulados

4.6 Cálculo das Emissões

A expressão genérica para o cálculo de emissões de cada poluente é dada por:

$$m_{x} = \dot{G} \times EF_{x} \tag{4.24}$$

- m_x massa de x emitido (g/h ou kg/h),
- G consumo de combustível (kg/h),
- EFx factor de emissão de x (g/kg de combustível), que depende do tipo de combustível.

4.6.1 Cálculo do Factor de Emissão de CO₂

O dióxido de carbono CO_2 é um dos principais produtos da combustão completa. O cálculo do factor de emissão de CO_2 baseia-se na composição química do combustível e na estequiometria da combustão.

A Fórmula geral para o cálculo do Factor de Emissão é:

$$EF_{CO_2} = \frac{M_{CO_2}}{M_{comb}}$$
 (4.25)

Onde:

- M_{CO2} = massa de CO_2 gerada na combustão,
- M_{comb} = massa do combustível queimado.

4.6.1 Cálculo do Factor de Emissão de CO₂

Para um combustível genérico $C_xH_yO_z$, a reacção completa da combustão pode ser escrita como:

$$C_x H_y O_z + \left(x - \frac{z}{2}\right) O_2 \to x C O_2 + \frac{y}{2} H_2 O$$
 (4.26)

A massa de CO_2 gerada pode ser calculada usando a massa molar do carbono 12 g/mol) e do dióxido de carbono 44 g/mol):

$$EF_{CO_2} = \frac{44x}{12x + y + 16z} \times 1000 \tag{4.27}$$

4.6.1 Cálculo do Factor de Emissão de CO₂

Para Gasolina C₈H₁₈ o factor de Emissão toma o seguinte aspecto:

$$EF_{CO_2} = \frac{44 \times 8}{12 \times 8 + 18} \times 1000 \approx 3100 \text{ g/kg}$$
 (4.28)

Para Gasóleo C₁₂H₂₆ o factor de Emissão é:

$$EF_{CO_2} = \frac{44 \times 12}{12 \times 12 + 26} \times 1000 \approx 3170 \text{ g/kg}$$
 (4.29)

4.6.2 Cálculo do Factor de Emissão de CO

O monóxido de carbono CO é um produto da combustão incompleta e depende do excesso de ar λ na combustão. A fórmula empírica para o cálculo do Factor de Emissão de CO é dada por:

$$EF_{CO} = A \times e^{-B\lambda} \tag{4.30}$$

Onde:

- A e B são coeficientes experimentais ajustados para cada tipo de combustível,
- λ é o coeficiente de excesso de ar
 Os Valores típicos são:
- Gasolina: EF_{CO} = 80 g/kg
- Gasóleo: EF_{CO} = 20 g/kg

4.6.3 Cálculo do Factor de Emissão de NOx

Os óxidos de nitrogénio NOx são formados a partir da reacção entre o nitrogénio do ar e o oxigénio a altas temperaturas. O modelo de Zeldovich é amplamente utilizado para estimar sua formação.

$$\frac{d[NO]}{dt} = k_1[O][N_2] - k_2[NO][N]$$
 (4.31)

Onde:

-
$$k_1 = 6,4 \times 10^{16} e^{-3160/T} cm^3 / mol.s$$
,

-
$$k_2 = 1.5 \times 10^9 e^{-755/T} cm^3 / mol.s$$
,

T é a temperatura da chama em Kelvin.

Os Valores típicos são:

- Gasolina: EF_{CO} = 8 g/kg
- Gasóleo: EF_{CO} = 40 g/kg

4.6.4 Cálculo do Factor de Emissão de Hidrocarbonetos Não Queimados HC

Os hidrocarbonetos não queimados HC são combustíveis que não queimaram completamente e podem ser estimados por:

$$EF_{HC} = C_1 + C_2 \times (1 - \lambda)$$
 (4.32)

Onde:

- C_1 e C_2 são coeficientes ajustados empiricamente. Os seus valores são:
- Para gasolina:
 - C_1 ≈ 5 g/kg
 - $C_2 \approx 50 \text{ g/kg}$
 - Para Gasóleo:
 - $-C_1 \approx 2 \text{ g/kg}$
 - C_2 ≈ 10 g/kg

4.6.5 Cálculo do Factor de Emissão de Material Particulado PM

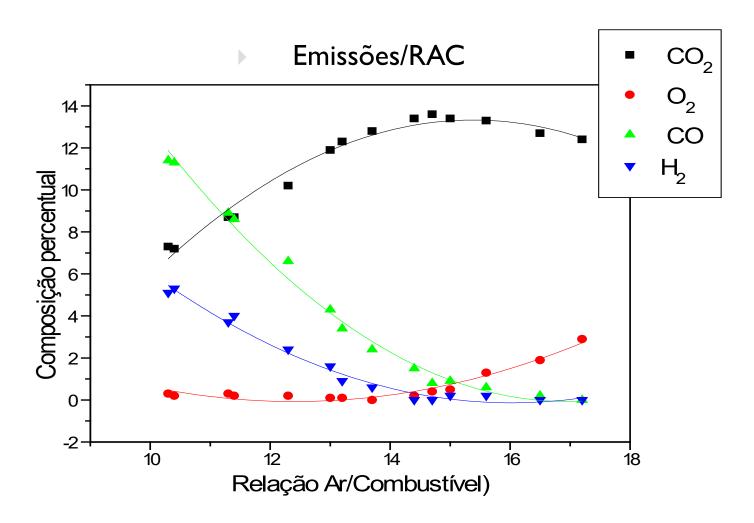
A emissão de material particulado PM é mais crítica em motores a Gasóleo devido à combustão heterogénea e pode ser estimada por:

$$EF_{PM} = a + b \times \lambda^{-1} \quad (4.33)$$

Onde:

- a e b são coeficientes empíricos ajustados.

Valores típicos:


- Gasolina 0,05 g/kg
- Gasóleo 0,5 g/kg

4.6.6 Resumo

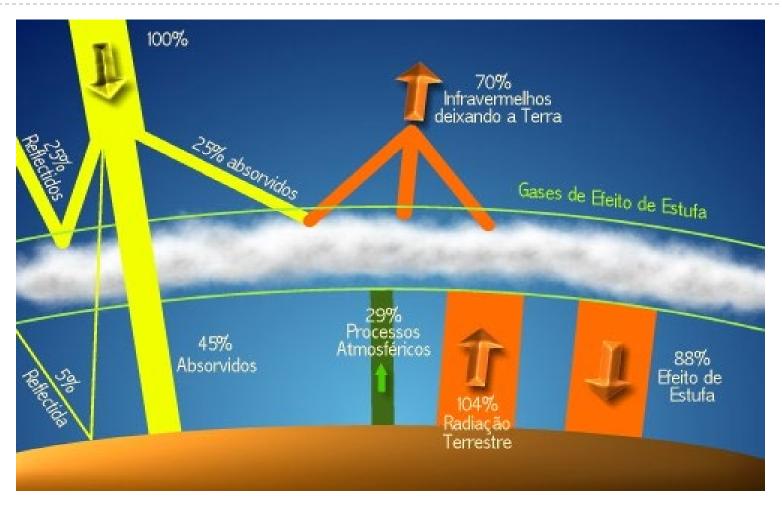
As fórmulas atrás são usadas para estimar emissões em motores de combustão interna, levando em conta a composição do combustível, a razão ar-combustível, a eficiência da combustão e a presença de catalisadores. Para medições mais precisas, são utilizados equipamentos como analisadores de gases de exaustão, opacímetros e sensores de NOx. Os valores típicos dos Factores de Emissão encontram-se na

tabela:

Poluente	Gasóleo	Gasolina
CO ₂ (g/kg)	3170.0	3100.0
CO (g/kg)	20.0	80.0
NO _x (g/kg)	40.0	8.0
HC (g/kg)	5.0	30.0
PM (g/kg)	0.5	0.05

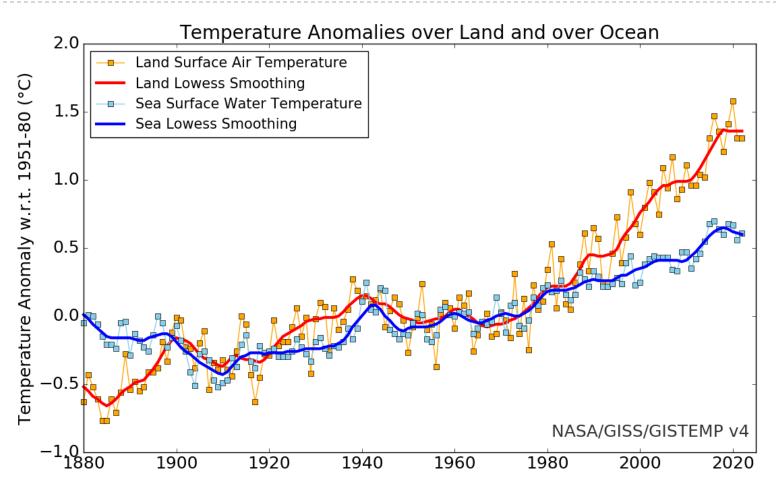
Dióxido de carbono – este componente não é tóxico, contudo as emissões dele contribuem bastante no aumento do efeito de estufa.

Os gases que absorvem radiação infravermelha, impedindo assim que a energia radiada pela Terra abandone a atmosfera, provocando o seu aquecimento, designam-se por "gases de estufa", destacando-se entre estes o dióxido de carbono, o vapor de água, o metano e os clorofluorcarbonetos (CFCs). A designação de efeito der estufa neste contexto é utilizada para caracterizar o aumento da temperatura global do planeta que está a ocorrer devido às elevadas emissões antropogénicas dos gases de estufa para a atmosfera (por exemplo resultantes de fenómenos de combustão).


- Monóxido de Carbono é um gás de cor escura, sem paladar nem cheiro. A inalação deste gás numa concentração volumétrica de 0,3% durante 30 minutos resulta na morte. A produção deste gás num motor que funciona segundo o ciclo Otto em marcha lenta é especialmente alta.
- Monóxido de Nitrogénio é uma gás sem cor paladar e cheiro, no ar ele transforma-se gradualmente em dióxido nítrico NO₂. O NO₂ puro é um gás venenoso de cor avermelhada castanha, com um odor penetrante. A concentração a que se encontra nos gases de escape e no ar poluído podem conduzir a irritação da mucosa. O NO e o NO₂ são geralmente designados óxidos nítricos NO_x.

Hidrocarbonetos – encontram-se nos gases de escape sob variadas formas. Quando expostos aos raios solares e aos óxidos nítricos, eles reagem para formar oxidantes que podem ser fonte de irritação da mucosa. Alguns hidrocarbonetos são considerados carcinogéneos.

4.8 Efeito Estufa


- Na natureza, o efeito estufa ocorre do seguinte modo:
- 1 O Sol emite radiação e luz visível sobre o planeta Terra e demais astros do Sistema Solar.
- 2 Os raios solares atingem a superfície terrestre e são retidos pela água, ar e pela terra. Parte dessa energia luminosa volta para o espaço.
- 3 A radiação absorvida pela superfície converte-se em calor. O calor tende a subir para as camadas superiores, dando lugar ao ar frio, em num movimento cíclico originado pelas correntes convectivas.
- 4 Parte do calor fica retido na superfície em decorrência da barreira de gases de efeito de estufa. Outra parte deste calor vai para o espaço.
 Vapor de água, dióxido de carbono, metano e outros gases são responsáveis por não deixar sair o calor da superfície terrestre.
- 5 O aumento na emissão de gases que ocasionam o efeito de estufa tem intensificado o debate sobre os efeitos da acção humana e da destruição dos recursos naturais sobre o clima global.

4.8 Efeito Estufa

https://www.infoescola.com/geografia/efeito-estufa/

4.8 Efeito Estufa

https://data.giss.nasa.gov/gistemp/graphs_v4/