

Optimização

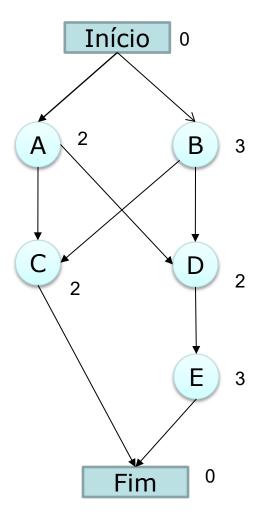
Aula 22

Redes

Aula 22: Modelos de Optimização de Redes (Prática)

 O Modelo de rede para Optimizar a relação Conflituosa Tempo-Custo

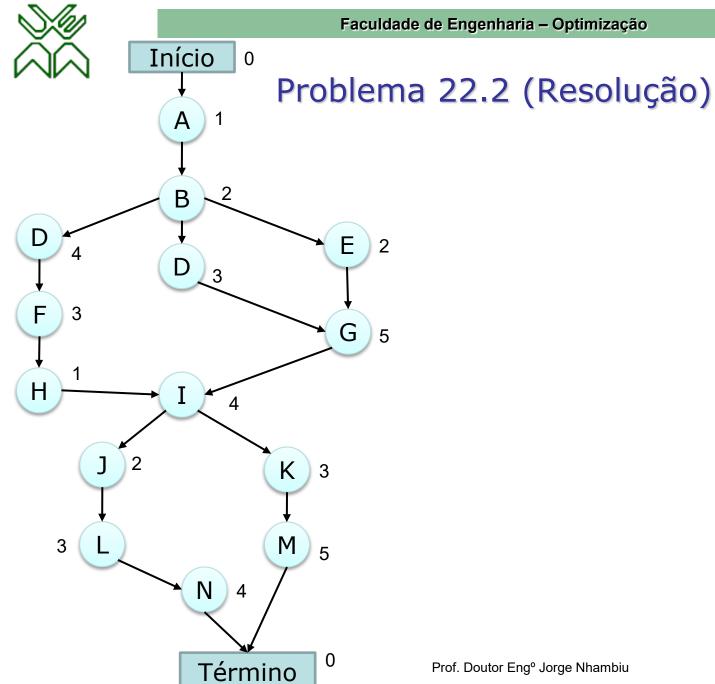
Problema 22.1


Eduardo Sabão tem como tarefa coordenar o próximo curso de actualização dos técnicos de manutenção de frio da empresa Frio Novo. Sabão listou as seguintes actividades a desenvolver para este projecto:

Actividade	Descrição da Actividade	Predecessores Imediatos	Duração estimada
Α	Seleccionar o lugar	_	2 semanas
В	Seleccionar os oradores	_	3 semanas
С	Fazer o plano de viagem para os oradores	A,B	2 semanas
D	Preparar e enviar as brochuras	A,B	2 semanas
E	Fazer as reservas	D	3 semanas

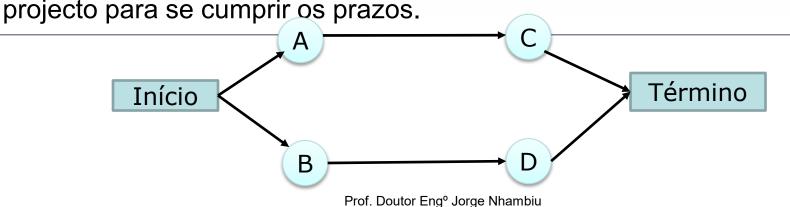
Construir a rede para este projecto.

Problema 22.1 (Resolução)



Construir a rede
para um
projecto com as
seguintes
actividades

Problema 22.2


Actividade	Predecessores Imediatos	Duração estimada
Α	_	1 mês
В	Α	2 meses
С	В	4 meses
D	В	3 meses
E	В	2 meses
F	С	3 meses
G	D,E	5 meses
Н	F	1 mês
I	G,H	4 meses
J	I	2 meses
K	I	3 meses
L	J	3 meses
M	K	5 meses
N	L	4 meses

Problema 22.3

Uma empresa metalúrgica precisa de construir um projecto de estrutura que deve estar pronto em 12 meses. Este projecto tem quatro actividades nomeadamente (A,B,C e D) como se mostra no diagrama. O Engenheiro Chefe Mutawanha, conclui que ele não será capaz de cumprir o prazo estabelecido executando todas as actividades de maneira normal. Portanto Mutawanha decidiu usar o método CPM de relações conflituosas tempo-custo para determinar a maneira mais económica de se impactar o

Problema 22.3 (II)

Ele compilou os dados para a relação conflituosa tempo-custo para as quatro actividades que se encontram na seguinte tabela:

Actividade	Tei	Tempo		Custo	
	Normal	Impactado	Normal	Impactado	
Α	8 meses	5 meses	US\$25000	US\$40000	
В	9 meses	7 meses	US\$20000	US\$30000	
С	6 meses	4 meses	US\$16000	US\$24000	
D	7 meses	4 meses	US\$27000	US\$45000	

Use a análise de custo marginal para resolver este problema.

Problema 22.3 (Resolução)

Actividade a ser	Custo impactado	Comprimento do caminho	
impactada		A-C	B-D
		14	16
В	US\$ 5000	14	15
В	US\$ 5000	14	14
С	US\$ 4000	13	14
D	US\$ 6000	13	13
С	US\$ 4000	12	13
D	US\$ 6000	12	12

Problema 22.4 (I)

Reconsidere o Problema 22.3 da empresa metalúrgica. Na época da Faculdade, Mutawanha fez um curso de optimização no qual teve um mês de programação linear de modo que Mutawanha decidiu usar a programação linear para analisar este problema

a) Considere o caminho superior da rede do projecto. Formule um modelo de programação linear de duas variáveis para o problema de como minimizar o custo de executar essa sequência de actividades em um prazo de 12 meses. Use o método gráfico para resolver esse modelo.

Problema 22.4 (II)

- b) Repita o item a) para o caminho inferior da rede do projecto
- c) Combine os modelos dos itens a) e b) em um único modelo completo de programação linear para o problema de minimização do custo para finalizar o projecto dentro de 12 meses. Qual seria uma solução óptima para este problema?
- d) Utilize a formulação de programação linear CPM apresentada na Aula 21 para formular um modelo completo para esse problema.

Problema 22.4 (Solução I)

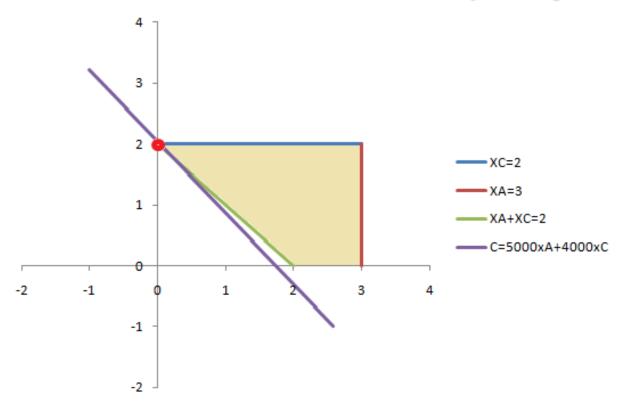
Seja x_A – redução em A feita com o impacto

Seja $x_{\rm C}$ – redução em C feita com o impacto

Minimize
$$C = 5 000 x_A + 4 000 x_c$$

Sujeito a:

$$x_A \leq 3$$


$$x_C \leq 2$$

$$x_A + x_C \ge 2$$

$$\begin{aligned} x_C &\leq 2 \\ x_A + x_C &\geq 2 \\ \text{Com } x_A &\geq 0, x_C &\geq 0 \end{aligned}$$

Problema 22.4 (Solução II)

Solução óptima $(x_A,x_C)=(0,2)$ e C = 8 000

Problema 22.4 (Solução III)

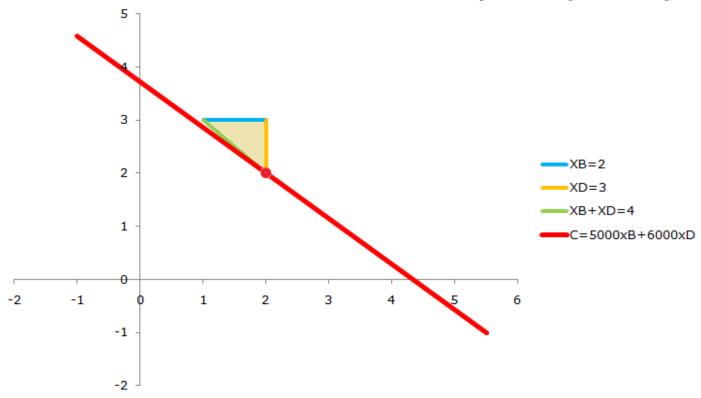
Seja $x_{\rm B}$ – redução em B feita com o impacto

Seja x_D – redução em D feita com o impacto

Minimize
$$C = 5 000 x_B + 6 000 x_D$$

Sujeito a:

$$x_B \leq 2$$


$$x_D \leq 3$$

$$x_B + x_D \ge 4$$

$$x_D \le 3$$

 $x_B + x_D \ge 4$
 $Com x_B \ge 0, x_D \ge 0$

Problema 22.4 (Solução IV)

Solução óptima $(x_B,x_D)=(2,2)$ e C = 22 000

Problema 22.4 (Solução III)

Seja x_A – redução em A feita com o impacto

Seja x_R – redução em B feita com o impacto

Seja x_C – redução em C feita com o impacto

Seja x_D – redução em D feita com o impacto

Minimize $C = 5\ 000\ x_A + 5\ 000\ x_B + 4\ 000\ x_C + 6\ 000\ x_D$

Problema 22.4 (Solução III)

Sujeito a:

$$x_A \leq 3$$

$$x_B \leq 2$$

$$x_C \leq 2$$

$$x_D \leq 3$$

$$x_A + x_C \ge 2$$

$$x_{A} - 3$$

$$x_{B} \le 2$$

$$x_{C} \le 2$$

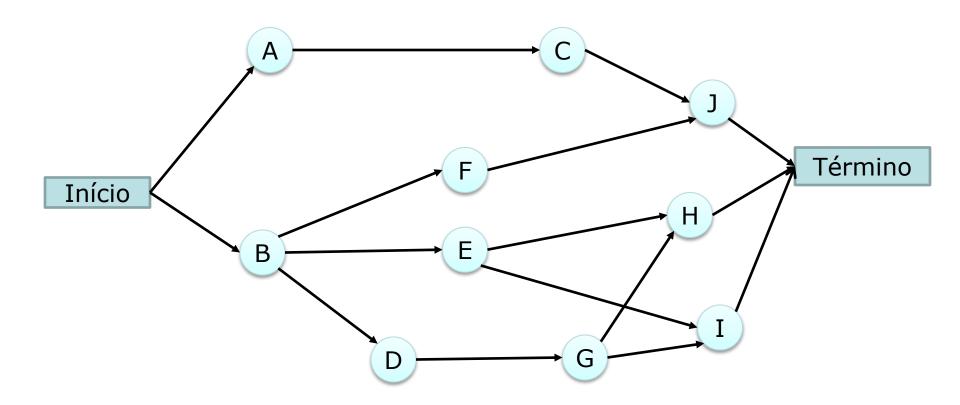
$$x_{D} \le 3$$

$$x_{A} + x_{C} \ge 2$$

$$x_{B} + x_{D} \ge 4$$

Com
$$x_A \ge 0$$
, $x_B \ge 0$, $x_C \ge 0$, $x_D \ge 0$

Solução óptima $(x_A, x_B, x_C, x_D) = (0, 2, 2, 2)$ e C = 30 000


Trabalho Para Casa (I)

A Lockead Aircraft Co, estás prestes a iniciar um projecto de um novo avião de combate para a força aérea norteamericana. O contrato da empresa com o Departamento de Defesa determina um prazo de 92 semanas para finalização do projecto, com imposição de multas caso o projecto seja entregue com atraso.

O projecto envolve dez actividades chamadas (A, B, C,...,J) cujas relações de precedência são mostradas na rede a seguir:

Trabalho Para Casa (II)

Trabalho Para Casa (III)

A gerência gostaria de evitar as pesadas multas impostas pelo não cumprimento do prazo de entrega estabelecido no contrato actual. Portanto a decisão tomada foi de impactar o projecto usando o método CPM de relações conflituosas tempo-custo para determinar como fazer isso da forma mais económica. Os dados necessários para aplicação do método são dados a seguir:

Trabalho Para Casa (IV)

Actividade	Tempo		Custo	
Actividade	Normal	Impactado	Normal	Impactado
Α	32 semanas	28 semanas	US\$160 milhões	US\$180 milhões
В	28 semanas	25 semanas	US\$125 milhões	US\$146 milhões
С	36 semanas	31 semanas	US\$170 milhões	US\$210 milhões
D	16 semanas	13 semanas	US\$ 60 milhões	US\$ 72milhões
Е	32 semanas	27 semanas	US\$135 milhões	US\$160 milhões
F	54 semanas	47 semanas	US\$215 milhões	US\$257 milhões
G	17 semanas	15 semanas	US\$ 90 milhões	US\$ 96 milhões
Н	20 semanas	17 semanas	US\$120 milhões	US\$132 milhões
I	34 semanas	30 semanas	US\$190 milhões	US\$226 milhões
J	18 semanas	16 semanas	US\$ 80 milhões	US\$ 84 milhões

Trabalho Para Casa (V)

- a) Formule o modelo de programação linear para o presente problema
- b) Use o Solver do Excel para resolver o problema
- c) Use o Lingo para resolver o mesmo problema

Enviar até as 5 horas de terça-feira dia 29 de Outubro para o endereço: optimizacao.dema@gmail.com com o "subject": Mini-Teste 14