

Optimização

Aula 23

Aula 23: Programação Dinâmica

- Programação Dinâmica Determinística; e
- Programação Dinâmica Probabilística.

O que é a Programação Dinâmica?

A Programação Dinâmica é uma técnica matemática útil para criar uma sequencia de decisões inter-relacionadas. Ela fornece um procedimento sistemático para determinar a combinação de decisões óptimas. Ao contrário da Programação Linear, não existe uma formulação matemática padrão do problema de programação dinâmica. Em vez disso a programação dinâmica é um tipo genérico de metodologia para a resolução de problemas e as equações particulares usadas têm de ser desenvolvidas para cada situação.

Que tipos de problemas de Programação Dinâmica existem?

Os problemas de Programação Dinâmica podem se dividir em de:

Programação Dinâmica Determinística; e Programação Dinâmica Probabilística.

Quais são as características básicas da Programação Dinâmica?

- 1. O problema pode ser dividido em estágios, e uma decisão sobre a política a ser adoptada é necessária a cada estágio.
- 2. Cada estágio possui um número de estados associados ao início desse estágio.
- 3. O efeito da decisão sobre a política a ser adoptada em cada estágio é o de transformar o estado actual num estado associado ao início do estágio seguinte.

- 4. O procedimento de resolução é desenhado para encontrar uma política óptima para o problema como um todo, isto é, estender a fórmula de decisão sobre a política óptima em cada estágio para cada um dos estágios possíveis.
- 5. Dado o estado actual uma política óptima para os estágios restantes é independente das decisões sobre as políticas adoptadas nos estágios anteriores. Portanto a decisão imediata óptima depende somente do estado actual e não de como se chegou lá. Esse é o principio da optimalidade para a programação dinâmica.

- 6. O procedimento de resolução começa encontrando a política óptima para o último estágio. A política óptima para o último estágio prescreve a decisão sobre a política óptima para cada um dos possíveis estados naquele estágio.
- 7. Há uma relação recursiva que identifica a política óptima para o estágio n, dada a política óptima para o estágio n+1 ao início desse estágio.
- 8. A forma precisa da relação recursiva difere um pouco entre os problemas de programação dinâmica. Entretanto uma notação comum pode ser usada, como se sintetiza a seguir:

Notação (I)

n→, designa o número do Estágio Actual.

N→, designa o Número de Estágios.

s_n→, designa o **Estado actual do Estágio n**.

 $x_n \rightarrow$, designa a variável de decisão para o **Estágio n**.

 $m{x_n}^* \!\! o$, designa o valor óptimo da $\,$ variável de decisão (dado $m{s_n}$).

Notação (II)

 $f_n(s_n,x_n) \rightarrow$, Função de Transição (contribuição dos Estágios n, n+1, ..., N para a função objectivo se o sistema começa no Estado s_n no Estágio n,

a decisão imediata é x_n e as decisões óptimas são tomadas dai para frente)

 $f_n^*(s_n) = f_n^*(s_n, x_n^*) \longrightarrow$, Valor da Política Óptima para cada **Estágio**.

Notação (III)

A relação Recursiva é dada por →

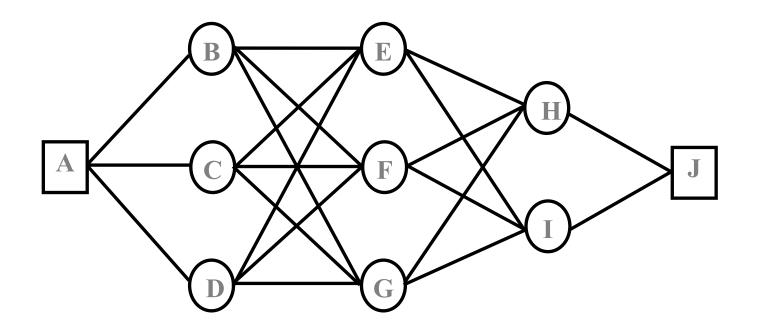
$$f_n^*(s_n) = \max_{x_n} \{f_n(s_n, x_n)\} ou \ f_n^*(s_n) = \min_{x_n} \{f_n(s_n, x_n)\}$$

 $C_{SXn} \rightarrow$, Valor dos encargos de transição entre Estados.

- 9. Quando se usa a relação recursiva o procedimento de solução começa no fim e vai voltando para trás estágio por estágio cada vez encontrando a política óptima para aquele estágio até ela encontrar a política óptima começando no estágio inicial.
- 10. Para todos os problemas de programação dinâmica uma tabela como se mostra a seguir será obtida a cada estágio:

X _n	$f_n\left(s_n,x_n\right) = C_{SX_n}$	$f_n^*(s_n)$	x_n^*
S _n			

Um aluno pretende *minimizar* o custo do transporte entre a sua residência e a faculdade utilizando vários meios de transporte disponíveis na rede seguinte:



O custo (u.m.) associado às ligações existentes traduz-se nas seguintes matrizes de transição:

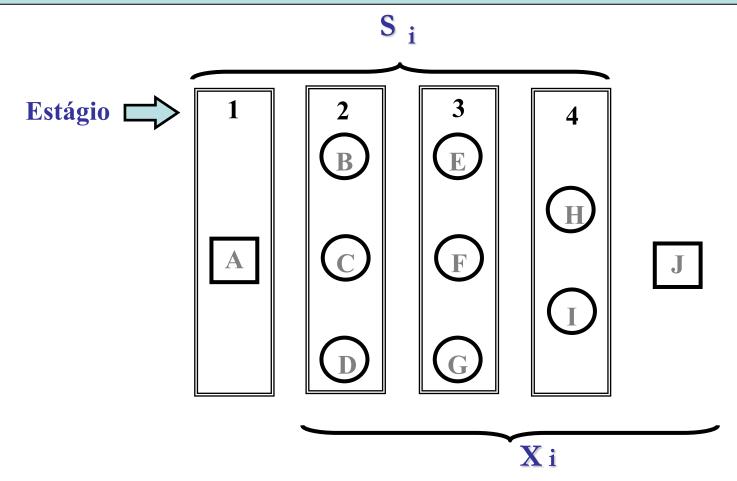
	В	C	D
A	1	3	2

	Н	I
E	1	3
F	5	2
G	2	2

	E	F	G
В	6	3	5
C	2	1	3
D	3	1	4

	J
Н	2
I	3

Sendo a casa do aluno o ponto inicial do percurso e a faculdade o ponto final tem-se quatro estágios (n = 4) como mostra a figura.



Como solucionar o problema?

Observe-se primeiramente que a metodologia de visão limitada de seleccionar a viagem mais barata oferecida por estágio sucessivo não conduz necessariamente a uma solução óptima global. Seguir essa estratégia resultaria na rota $A \to B \to F \to I \to J$, a um custo total igual a 9. Entretanto, sacrificar um pouco em um estágio pode vir a permitir maiores economias mais a frente, por exemplo $A \to D \to F$ é no geral mais barato que $A \to B \to F$.

Como se faz a formulação do problema?

Faça-se as variáveis de decisão x_n (n=1,2,3,4) como destino imediato no estágio n (a n-ésima viagem que pode ser realizada). Logo a rota seleccionada é $A \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4$ em que x_4 =J.

Façamos $f_s(s, x_n)$ o custo total da melhor rota como um todo para os estágios restantes dado que o estudante se encontra no estado s pronto para iniciar o **estado n** e selecciona x_n como seu destino imediato.

Sendo \mathbf{c}_{sxn} o custo de transporte associado à decisão \mathbf{x}_{n} , quando o aluno se encontra no Estado \mathbf{S}_{n} esta relação recursiva é da forma:

$$f_n^*(s) = \min_{x_n} \{C_{SX_n} + f_{n+1}^*(x_n)\}$$

O cálculo da solução óptima é feito pela ordem:

$$f_n^*(4), f_n^*(3), f_n^*(2), f_n^*(1)$$

Qual o procedimento de resolução do problema?

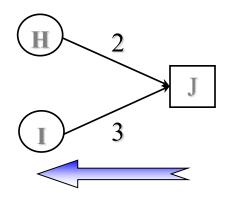
Quando estudante tiver apenas mais uma etapa a cumprir (n=4), daí em diante sua rota é determinada inteiramente pelo seu estado actual **s** (H ou então I) e seu destino final x_4 =J, de modo que a rota final para a viagem do estudante seja s \rightarrow J.

Consequentemente já que $f_4^* = f_4(s,J) = c_{s,J}$

A solução imediata para o problema n=4 toma então o seguinte aspecto:

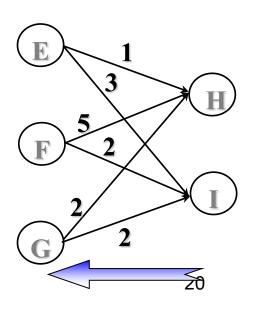
O quadro seguinte ilustra as decisões associadas ao **Estágio 4**:

X_4	$\frac{f_4(S, X_4) = C_{SX_4}}{\mathbf{J}}$	$f_4^*(S)$	X_4^*
Н	2	2	J
I	3	3	J



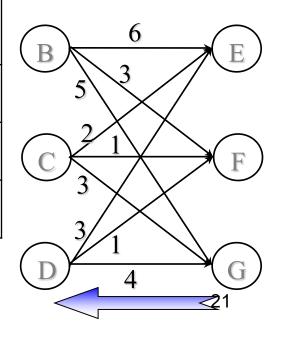
O quadro seguinte ilustra as decisões associadas ao **Estágio 3**:

X_3	$f_3(S, X_3) = C_{SX_3} + f_4^*(S)$		$f_3^*(S)$	V^*
S	Н	I	J_3 (D)	Λ_3
E	1+2=3	3+3=6	3	Н
F	5+2=7	2+3=5	5	I
G	2+2=4	2+3=5	4	Н



O quadro seguinte ilustra as decisões associadas ao **Estágio 2**:

X_2	$f_2(S,X)$	$f_2^*(S)$	X_2^*		
s	E	F	G	32 ()	2
В	6+3=9	3+5=8	5+4=9	8	F
C	2+3=5	1+5=6	3+4=7	5	E
D	3+3=6	1+5=6	4+4=8	6	E/F

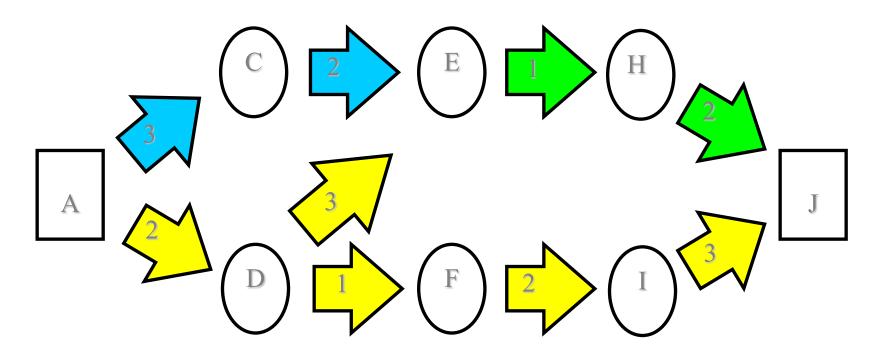


O quadro seguinte ilustra as decisões associadas ao **Estágio 1**:

X_1	$f_1(S,X)$	$\left(C_{SX_1} + C_{SX_1} \right) = C_{SX_1} + C_{$	$-f_2^*(S)$	$f_1^*(S)$	X_1^*	$\begin{array}{c c} A & 3 & C \\ \hline 2 & 0 \\ \end{array}$
S	В	C	D	$J_1(S)$	1	D
A	1+8=9	3+5=8	2+6=8	8	C/D	

Podemos então concluir que a política óptima tem um custo total mínimo de = 8 u.m.

Problema com múltiplas soluções. Existem três caminhos distintos com o mesmo valor óptimo (com custo = 8 u.m.)



Problema de afectação múltipla (PD determinística e discreta)

Um aluno está prestes a iniciar a sua época de exames em três cadeiras sendo de 3 dias o tempo disponível para preparação. Adicionalmente, o aluno durante um dia só estuda para um dos exames, por uma questão de método, e quer estar presente em todos eles.

•A previsão do aluno para a classificação em cada uma das cadeiras, em função do tempo (dias) de preparação para cada uma delas é a seguinte:

Cadeiras Dias	1	2	3
0	8	7	8
1	10	11	11
2	13	12	13
3	16	15	17

•O aluno pretende saber qual o plano de estudo (dias de estudo/cadeira) que *maximizará* a <u>média</u> das classificações dos exames.

• $x_n(n = 1,2,3)$, as variáveis de decisão que representam o número de dias a estudar para cada estágio (exame) n;

• s_n = número de dias de estudo disponíveis para o estágio (exame) n, que pode ser 0, 1, 2 ou 3;

• $c_i(x_i)$ = nota obtida à cadeira i com um estudo de x_i dias;

Objectivo do problema:

• escolher x_1, x_2, x_3 de forma a maximizar $\frac{1}{3} \sum_{i=1}^{3} c_i(x_i)$

Sujeito a

$$\sum_{i=1}^{3} x_i = 3$$

com $\chi_i \ge 0$ e inteiro

A contribuição dos estágios n, n + 1, ..., N para a função objectivo é dada por:

$$f_n(s_n, x_n) = c_n(x_n) + \max \sum_{i=n+1}^{N} c_i(x_i)$$

em que N representa o número de estágios (no nosso caso N = 3) com $\sum_{i=1}^{3} x_i = s_n$

e,

$$f_n^*(s_n) = \max_{x_n=0,1,...,s_n} f_n(s_n, x_n)$$

portanto,

$$f_n(s_n, x_n) = c_n(x_n) + f_{n+1}^*(s_n - x_n)$$

Consequentemente a relação recursiva relativa às funções $f_1^*, f_2^* e f_3^*$ para este problema é

$$f_n^*(s_n) = \max_{x_n=0,1,\dots,s_n} \{c_n(x_n) + f_{n+1}^*(s_n - x_n)\}, para n = 1,2$$

Para o último estágio (n = 3) temos,

$$f_3^* = \max_{x_3 = 0, 1, \dots, s_3} c_3(x_3)$$

•O quadro seguinte ilustra as decisões associadas ao Estágio 3 (cadeira 3):

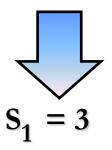
S_3	$f_3(s_3,x_3) = C_3(x_3)$	$f_3^*(s_3)$	x_3^*
0	8	8	0
1	11	11	1
2	13	13	2
3	17	17	3

•O quadro seguinte ilustra as decisões associadas ao **Estágio 2 (cadeira 2)**:

X_2	$f_2(s_2, x_2) = c_2(x_2) + f_3^*(s_2 - x_2)$				$f_2^*(s_2)$	X_2^*
S_2	0	1	2	3		2
0	7 + 8 = 15				15	0
1	7+11=18	11+8=19			19	1
2	7 + 13 = 20	11 + 11 = 22	12 + 8 = 20		22	1
3	7 + 17 = 24	11 + 13 = 24	12 + 11 = 23	15 + 8 = 23	24	0 ou 1

O quadro seguinte ilustra as decisões associadas ao **Estágio 1 (cadeira 1)**:

De notar que neste Estágio há 3 dias disponíveis



X_1	$f_1(s_1, s_2)$	$f_1^*(s_1)$	X_1^*			
$ S_1 $	0	1	2	3		1
3	8 + 24 = 32	10 + 22 = 32	13 + 19 = 32	16 + 15 = 31	32	0 ou 1 ou 2

•No quadro seguinte indicam-se as soluções óptimas de 32 valores acumulados:

Solução	Cadeira 1 (Dias)	Cadeira 2 (Dias)	Cadeira 3 (Dias)	Classificação Acumulada
I	0	0	3	8+7+17=32
II	0	1	2	8+11+13=32
III	1	1	1	10+11+11=32
IV	2	1	0	13+11+8=32

A política óptima é a que permite acumular 32 valores a que corresponde a média de 32/3≈10,67 valores.

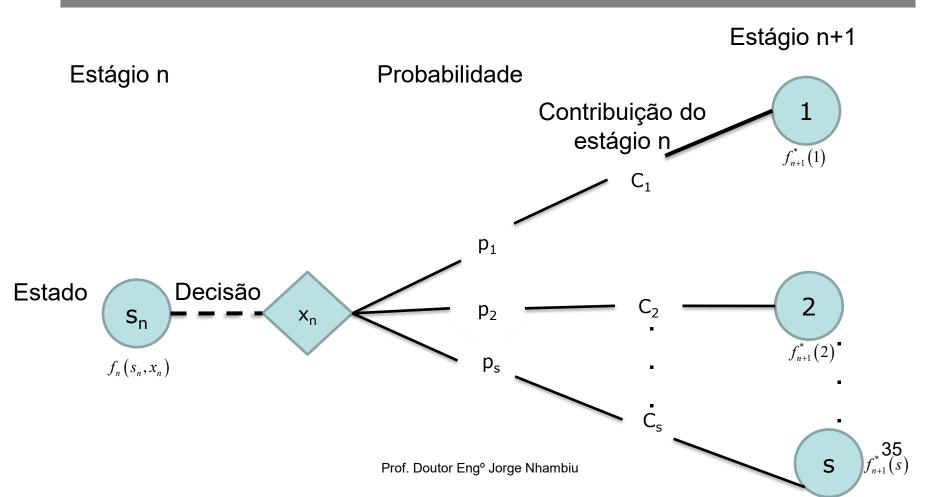
Programação Dinâmica Probabilística

Em que difere a Programação Dinâmica Probabilística da Determinística?

A programação dinâmica probabilística difere da programação dinâmica determinística pelo facto do estado no estágio seguinte não ser completamente determinado pelo estado e pela decisão sobre a política a ser adoptada no estado actual. Em vez disso, há uma distribuição probabilística para qual deva ser o estado seguinte. Entretanto essa distribuição de probabilidades ainda é completamente determinada pelo estado e pela decisão sobre a política a ser adoptada do estágio actual.

Programação Dinâmica Probabilística

A estrutura básica resultante para a programação dinâmica probabilística é descrita em forma de diagrama na figura seguinte:



Programação Dinâmica Probabilística

No diagrama, S representa o número de estágios possíveis no estágio n+1 e designou-se esses estados do lado direito por 1,2,...,S. O sistema vai para o estágio i com a probabilidade p_i (i=1,2,...,S) dado o estado s_n e a decisão x_n . Se o sistema for para o estado i , C_i será a contribuição do estágio n à função objectivo.

Programação Dinâmica Probabilística

Para fins ilustrativos, suponhamos que o objectivo seja minimizar a soma esperada das contribuições de cada um dos estágios. Nesse caso, $f_n(s_n, x_n)$ representa a soma mínima esperada do estágio n em diante, dado que o estado e a decisão sobre a política a ser adoptada no estágio n sejam, respectivamente s_n e x_n , consequentemente:

$$f_n(s_n, x_n) = \sum_{i=1}^{S} p_i \left[C_i + f_{n+1}^*(i) \right]$$

com

$$f_{n+1}^*(i) = \min_{x_{n+1}} f_{n+1}(i, x_{n+1})$$

Em que essa minimização é extraída dos valores viáveis de x_{n+1}

Problema de afectação múltipla (PD probabilística e discreta)

Uma conhecida marca de automóveis pretende distribuir 5 viaturas por 3 vendedores da marca. A procura de automóveis em cada um dos concessionários é aleatória, de acordo com as seguintes distribuições de probabilidades:

Vend. Procura	1	2	3
0	0,3	0,2	0,5
1	0,4	0,3	0,2
2	0,2	0,2	0,1
3	0,1	0,3	0,2
Lucro (x 100 Dólares)	200	210	220

Objectivo do problema:

- Distribuir os veículos de forma a *maximizar* o lucro.
- $x_n(n = 1,2,3)$ as variáveis de decisão que representam o número de automóveis a distribuir por cada estágio (concessionário) n;
- S_n = número de automóveis disponíveis para o estágio (concessionário) n, que pode ser 0, 1, 2, 3, 4 ou 5;
- $c_i(x_i)$ = lucro esperado no concessionário i com uma atribuição de x_i veículos.

• Atendendo às probabilidades do quadro anterior, os valores dos lucros esperados são:

Vendedores Automóveis	1	2	3
0	0	0	0
1	140	168	110
2	200	189	176
3	220	336	220
4	220	336	220
5	220	336	220

Objectivo do problema:

• escolher X_1, X_2, X_3 de forma a maximizar $\sum_i c_i(x_i)$

$$\sum_{i=1}^{3} c_i(x_i)$$

Sujeito a

$$\sum_{i=1}^{5} x_i = 5$$

$$i=1$$

 $com x_i \ge 0$ e inteiro

Solução

Para x_1^* tem-se $s_2^*=5$ -1=4, consultando o quadro do Estágio 2 para $s_2^*=4$ tem-se $x_2^*=3$. Considerando $x_2^*=3$ obtém-se $s_3^*=4$ -3=1, que no quadro do Estágio 3 corresponde a $x_3^*=1$. Portanto, esta solução traduz-se na distribuição de 1, 3 e 1 automóveis para os concessionários 1, 2 e 3, respectivamente, onde se obterão lucros de 140, 336 e 110 (×100 Dólares), respectivamente.

Concessionário 1 (unidades)	Concessionário 2 (unidades)	Concessionário 3 (unidades)	Lucro Acumulado (×100 euros)
1	3	1	140 + 336 + 110 = 586

Problema de Programação Linear (PD determinística e contínua)

$$Max f(x_1, x_2) = 3x_1 + 5x_2$$

s.a.
$$x_1 \le 4$$

 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

- Estágios
 - 1 destinado a decidir o valor de x₁
 - 2 destinado a decidir os valor de x₂

• Estados – dizem respeito à quantidade de recurso disponível para as restantes actividades.

Estágio 2

$$s_2 = \begin{vmatrix} 4 - x_1 \\ 12 \\ 18 - 3x_1 \end{vmatrix}$$

Estágio 1

$$s_1 = \begin{vmatrix} 4 \\ 12 \\ 18 \end{vmatrix}$$

Função de Transição

•Num Estágio *n* o valor óptimo da função de transição será:

$$f_n^*(b_1,b_2,b_3) = Max f_n(b_1,b_2,b_3,x_n)$$

No estágio 2 (estágio inicial do cálculo) tem-se:

$$f_{2}^{*}(b_{1},b_{2},b_{3}) = \underset{2x_{2} \leq b_{2}}{Max} (5x_{2})$$

$$2x_{2} \leq b_{3}$$

$$x_{2} \geq 0$$

Função de Transição

No estágio 1 (estágio final do cálculo) tem-se:

$$f_{1}^{*}(4,12,18) = \underset{S.a.}{Max} \left\{ 3x_{1} + f_{2}^{*}(4 - x_{1},12,18 - 3x_{1}) \right\}$$

$$x_{1} \le 4$$

$$3x_{1} \le 18$$

$$x_{1} \ge 0$$

Cálculo no Estágio 2

Sendo a variável de estado

$$s_2 = \begin{bmatrix} 4 - x_1 \\ 12 \\ 18 - 3x_1 \end{bmatrix}$$

então x_2^* deve satisfazer simultaneamente:

$$\begin{cases} 2x_2 \le 12 \\ 2x_2 \le 18 - 3x_1 \\ x_2 \ge 0 \end{cases}$$

Pelo que o valor máximo de x_2 é igual a

$$Min\left\{\frac{12}{2}, \frac{18-3x_1}{2}\right\}$$

O quadro deste estágio é então:

Recursos restantes	$f_2^*(recursos\ restantes)$	x_2^*
12 ≥ 0	$5 \times Min \left\{ \frac{12}{12}, \frac{18 - 3x_1}{12} \right\}$	$Min \int \frac{12}{18-3x_1} \left(\frac{18-3x_1}{1} \right)$
$18 - 3x_1 \ge 0$	$\left[\begin{array}{cc} 3 \times Min \\ \hline 2 \end{array}\right]$	$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$

Cálculo no Estágio 1

$$f_{1}^{*}(4,12,18) = \underset{\substack{x_{1} \leq 4 \\ 3x_{1} \leq 18 \\ x_{1} \geq 0}}{Max} \left\{ 3x_{1} + f_{2}^{*}(4 - x_{1},12,18 - 3x_{1}) \right\}$$

$$f_{1}^{*}(4,12,18) = \underset{\substack{x_{1} \leq 4 \\ x_{1} \leq 6 \\ x_{1} \geq 0}}{Max} \left\{ 3x_{1} + 5 \times Min \left\{ \frac{12}{2}, \frac{18 - 3x_{1}}{2} \right\} \right\}$$

Faculdade de Engenharia – Investigação Operacional

$$x_1 \le 4$$

$$Min\left\{\frac{12}{2}, \frac{18-3x_1}{2}\right\}$$

$$Min\left\{\frac{12}{2}, \frac{18 - 3x_1}{2}\right\} = \begin{cases} 6 & para \ 0 \le x_1 \le 2\\ 9 - \frac{3}{2}x_1 & para \ 2 \le x_1 \le 4 \end{cases}$$

$$f_1^*(4,12,18) = \begin{cases} 3x_1 + 30 & para \ 0 \le x_1 \le 2 \to valor \ m\'{a}ximo = 36 \ com \ x_1 = 2 \\ 45 - \frac{9}{2}x_1 \ para \ 2 \le x_1 \le 4 \to valor \ m\'{a}ximo = 36 \ com \ x_1 = 2 \end{cases}$$

$$f_1^* = 36$$

$$x_1^* = 2$$

$$x_1^* = 2$$
 $x_2^* = Min\left\{\frac{12}{2}, \frac{18 - 3x_1}{2}\right\} = 6$

Aplicações

- Caixeiro viajante
- Mochila
- Programação Linear e Não Linear
- Afectação Múltipla

•