Sistemas Energéticos

3° ano 6° semestre Aula 22

Aula 22: Energia Solar Activa Aula Prática

Problema 22.1

Calcular o número de colectores térmicos planos para uma vivenda unifamiliar de 6 pessoas, que funcionam 6 horas por dia durante 30 dias por mês, uma a temperatura de utilização de 65°C a temperatura da rede de 25°C e a temperatura ambiente de 28°C, localizado numa zona poluída de uma grande cidade, a irradiação média diária de 17,96 MJ/m²dia, as perdas globais são de 10%, o factor de inclinação de 0,8, a área do colector de 2 m², o calor específico da água 4,186 KJ/KgK.

Problema 22.1 (Resolução I)

Tabela 21.1 - Consumos diários de referência

Consumos	Litros/dia a 60°C
Vivendas unifamiliares	30 por pessoa
Vivendas multifamiliares	22 por pessoa
Hospitais e clínicas	55 por cama
Hotéis (4 estrelas*)	70 por cama
Hotéis (3 estrelas*)	55 por cama
Hotéis/Residenciais (2 estrelas*)	40 por cama
Campismo	40 por posição
Residenciais/Pensões (1 estrela*)	35 por cama
Residências (idosos, estudantes, etc.)	55 por cama
Vestiários/Duches colectivos	15 por serviço
Escolas	3 por aluno
Quartéis	20 por pessoa
Fábricas	15 por pessoa
Administrativos	3 por pessoa
Ginásios	20 a 25 por usuário
Lavandarias	3 a 5 por Kg de roupa
Restaurantes	5 a 10 por refeição
Cafetarias	1 por refeição ligeira

Problema 22.1 (Resolução II)

Consumo diário calcula-se de:

$$Consumo\ diário = N_{consumidores} \times Cons_{Ref} \ [litros]$$

Consumo diário =
$$6 \times 30 = 180$$
 [litros]

Consumo equivalente à T_{utilização} e à T_{rede} para cada mês, calcular-se:

Consumo equivalente = Consumo diário
$$(T_{ref}) \times \left(\frac{T_{ref} - T_{rede}}{T_{utiliz} - T_{rede}}\right) [litros]$$

Consumo equivalente =
$$180 \times \left(\frac{60-25}{65-25}\right) = 157,5 \left[litros\right]$$

As necessidades energéticas diárias calculam-se de:

$$Q = m \cdot c_p \cdot \Delta t \left[J \right]$$

$$Q = C_{eq} \cdot c_p \cdot \Delta t \left[J \right]$$

$$Q = 157, 5 \cdot 4,186 \cdot (65 - 25) / 1000 = 26,371 [MJ]_{dia}$$

Problema 22.1 (Resolução III)

As necessidades energéticas mensais $(E_{n.m})$ calculam-se pela seguinte expressão:

$$E_{n,m} = Q \times dias do m\hat{e}s$$

$$E_{n,m} = 26,371 \times 30 = 791,154 [MJ/mes]$$

Onde:

 $E_{n.m}$ - Necessidades energéticas mensais [MJ/mês]

Q - Necessidade energética diária [MJ/dia]

Problema 22.1 (Resolução IV)

A irradiação horizontal média corrigida, para cada mês calcula-se de:

$$H_{Corrigida} = H \times Coef_{Correcção}$$

$$H_{Corrigida} = 17,96 \times 0,95 = 17,062 \left[\frac{MJ}{m^2 dia} \right]$$

Onde:

 $H_{Corrigida}$ - Irradiação horizontal média para cada mês corrigida [MJ/m²dia]

H- Irradiação horizontal média para cada mês [MJ/m²dia]

Coef_{Correcção} - Coeficiente correcção [Adimensional]

Problema 22.1 (Resolução V)

Assim, para a correcta obtenção da energia aproveitável (E_{ap}) esta deve ser multiplicada por 0,94.

$$E_{ap} = H_{Corrigida} \times f \times 0,94$$

$$E_{ap} = 17,062 \times 0,8 \times 0,94 = 13,1 \left[\frac{MJ}{m^2 dia} \right]$$

Problema 22.1 (Resolução VI)

A expressão que permite o cálculo da intensidade é a seguinte:

$$I = \frac{E_{ap}}{n_{hs}}$$

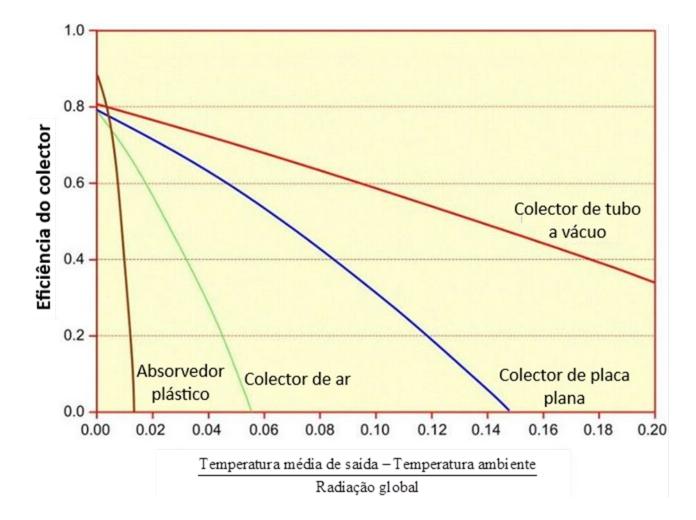
$$I = \frac{13,1 \times 10^6}{6 \times 3600} = 606,65 \left[\frac{W}{m^2} \right]$$

Sendo:

I - Irradiação global Incidente sobre a superfície do colector por unidade de área $[W/m^2]$

E_{ap} - Energia aproveitável ou energia total teórica incidente por m² [MJ/m²dia]

 n_{hs} - Número de horas de sol [s]



10

Problema 22.1 (Resolução VII)

O rendimento do colector se retira do seguinte ábaco

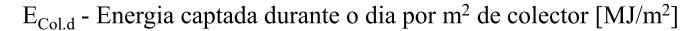
Problema 22.1 (Resolução VIII)

ullet O coeficiente Φ para se consultar o ábaco calcula-se de:

$$\phi = \frac{T_{utiz} - T_{amb}}{I}$$

$$\phi = \frac{65 - 28}{606,65} = 0,061 \left[\frac{{}^{\circ}C \times m^{2}}{W} \right]$$

• Do ábaco retira-se η_r =0,53


Problema 22.1 (Resolução IX)

Na posse dos resultados da energia incidente (Eap), do rendimento real do colector (ηr) e das perdas de calor globais do sistema, pode ser calculada a energia diária captada por cada m² ($E_{col,d}$) através da expressão:

$$E_{col.d} = E_{ap} \eta_r P_g$$

$$E_{col.d} = 13,104 \cdot 0,53 \cdot (1-0,1) = 6,25 \left[\frac{MJ}{m^2 dia} \right]$$

Onde:

 E_{ap} - Energia aproveitável ou energia total teórica incidente por $m^2 \ [\text{MJ/m}^2]$

 η_r - Rendimento real do colector [%]

 P_g - Percentagem correspondente as perdas globais do sistema [%]

Problema 22.1 (Resolução X)

Como é pretendido a energia mensal captada por cada m^2 efectuase o produto da $(E_{Col.m})$ pelos dias correspondentes ao mês em causa através da expressão:

$$E_{col.m} = E_{col.d} \times dias do \, m\hat{e}s$$

$$E_{col.m} = 6,25 \times 30 = 187,513 \left[\frac{MJ}{m^2 m \hat{e}s} \right]$$

em que:

E_{col.m}- Energia captada durante o mês por m² de colector [MJ/m²mês]

Problema 22.1 (Resolução XI)

Para o cálculo da área de superfície colectora teórica A_{sc} , efectua-se o quociente das necessidades energéticas mensais $(E_{n,m})$ pela energia captada durante o mês por m² de colector ($E_{Col,m}$) conforme a seguinte equação:

$$A_{sc} = \frac{E_{n.m}}{E_{col.m}}$$

$$A_{sc} = \frac{791,154}{187,513} = 4,22 \left[m^2 \right]$$

Onde:

A_{sc} - Área de superfície colectora teórica [m²]

E_{n,m}- Necessidades energéticas mensais [MJ]

E_{Col.m}- Energia captada durante o mês por m² de colector [MJ/m²]

Problema 22.1 (Resolução XII)

Assim, sabendo a área útil de captação do colector (A_c) , calcula-se o número teórico de colectores (N_{ct}) para cada mês, pela expressão seguinte:

$$N_{ct} = \frac{A_{sc}}{A_c}$$

$$N_{ct} = \frac{4,22}{2} = 2,11$$

Onde:

N_{ct} - Número teórico de colectores necessários [adimensional]

A_{sc} - Área de superfície colectora teórica [m²]

A_c - Área útil de captação do colector [m²]

Problema 22.1 (Resolução XIII)

Depois de definido o número real de colectores a aplicar ao sistema solar, calcula-se então a energia efectiva captada por mês ($E_{Col.e}$), pelo produto da energia captada por mês por m² de colector ($E_{Col.m}$), área do colector (A_c) e pelo número real de colectores aplicados ao sistema (N_{cr}) pela seguinte expressão:

$$E_{col.e} = E_{Col.m} \times A_c \times N_{cr}$$

$$E_{col.e} = 187,52 \times 2 \times 3 = 1125,1 \left\lceil \frac{MJ}{m\hat{e}s} \right\rceil$$

Em que:

E_{Col.e} Energia efectiva captada por mês [MJ/m² mês]

E_{Col.m} - Energia captada durante o mês por m² de colector [MJ/m²mês]

A_c - Área útil de captação do colector [m²]

N_{cr} - Número real de colectores [adimensional]

Problema 22.2

Dimensionar um sistema fotovoltaico para uma residência que tem os seguintes electrodomésticos: 4 lâmpadas de 60W, que são usadas 4 horas por dia, 1 geleira duplex que é usada 5 horas por dia, uma televisão que é usada 5 horas por dia, um computador que é usado 4 horas por dia, um aparelho de AC de 8500 BTU/hora que funciona 5 horas por dia, em Maputo, sendo o rendimento do inversor juntamente com o regulador de 0,85, as baterias são TLS4 do fabricante PowerSafe com rendimento de 80% e capacidade de descarga de 0,6, sabe-se ainda e sabendo que podem acontecer 3 dias sem sol.

Problema 22.2 (Resolução I)

Tabela 21.5 – Estimativa de consumo diário de energia

Equipamentos	Número	Horas de uso/dia	Potência (W)	Energia diária (Wh/d)
Lâmpadas de leitura	4	4	60	960
Frigorifico	1	5	300	1500
Televisão	1	5	200	1000
AC	1	5	1300	6500
TOTAIS			2060	10760

Problema 22.2 (Resolução II)

Tabela 21.6 Produção média mensal de electricidade do sistema definido [kWh] e Soma média mensal da irradiação global por metro quadrado recebido pelos módulos do sistema dado [kWh/m²] para a cidade de Maputo

11/:\...

Mês	E _M	H(i)m	SD_m	
ivies	[KWh/kW/mês]	[KWh/m²]		
Janeiro	137,5	182,9	11,3	
Fevereiro	113,1	152,0	6,0	
Março	91,7	125,0	3,6	
Abril	55,7	79,6	1,2	
Maio	32,5	51,2	1,1	
Junho	24,2	38,9	1,7	
Julho	29,2	46,0	1,5	
Agosto	48,5	70,9	1,3	
Setembro	77,5	106,6	2,3	
Outubro	111,2	147,8	4,5	
Novembro	124,4	166,1	7,1	
Dezembro	139,4	185,9	12,2	

Problema 22.2 (Resolução IV)

A potência do gerador FV calcula-se de acordo com a seguinte equação:

$$P_{FV} = \frac{W_M}{\eta_{sistema} \times E_M}$$

$$P_{FV} = \frac{10760 \times 30}{0.67 \times 24.2} = 20222, 6 [kW]$$

20

Onde:

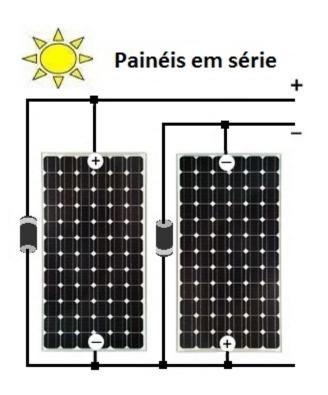
 η_{sist} – é o Rendimento do sistema

 W_M - é a energia total consumida por dia mês

 E_M - Produção de energia associada a 1 kW instalado (kWh/kW/mês)

Problema 22.2 (Resolução V)

o número de módulos por fileira é calculado através da seguinte expressão:


$$N_S > \frac{V_{bat}}{V_{max}}$$
 $N_S > \frac{48}{37.5} = 1,28 \approx 2$

onde V_{max} corresponde à tensão máxima do módulo medida em condições padrão.

Problema 22.2 (Resolução VI)

Número de Módulos por Fileira

Se conectarmos um painel a outro em série (Figura 21.7) - (positivo de um painel com o negativo do outro), a cada painel adicionado a corrente se mantém e as tensões se somam.

22

Figura 21.7 – Ligação de painéis em série

Problema 22.2 (Resolução VII)

onde N_F representa o número de fileiras ligadas em paralelo e I_{max} corresponde à corrente máxima do módulo medida em condições padrão. Por outro lado, a potência do gerador FV corresponde ao produto entre a tensão do gerador ($N_s \times V_{max}$) e a corrente total:

$$P_{FV} = (N_S \cdot V_{\text{max}}) \times I_T \Rightarrow I_T = \frac{P_{FV}}{N_S \times V_{\text{max}}}$$

Problema 22.2 (Resolução VIII)

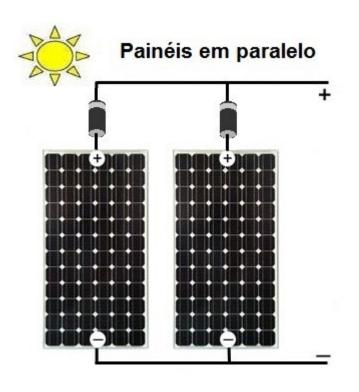
O número de módulos por fileira é calculado através da seguinte expressão:

$$N_{F} = \frac{P_{FV}}{N_{S} \times V_{\text{max}} \times I_{\text{max}}}$$

$$N_{F} = \frac{20222, 6}{2 \times 37, 5 \times 17, 07} = 15, 8 \approx 16$$

Onde:

P_{FV} - Potência do gerador Foto Voltaico


N_s – Número de módulos

V_{max} – Tensão máxima

I_{max} – Corrente máxima

Problema 22.2 (Resolução IX)

Número de Fileiras em Paralelo

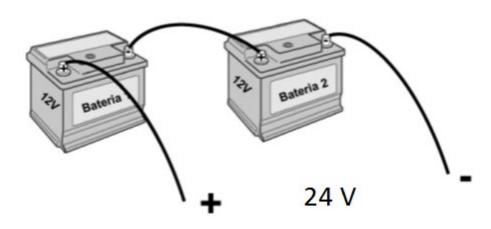

Se conectarmos um painel a outro em paralelo (Figura 21.8) - (positivo com positivo e negativo com negativo), a cada painel adicionado, a tensão se mantém e as correntes se somam;

Figura 21.8 – Ligação de painéis em paralelo

Problema 22.2 (Resolução X)

A ligação de baterias em série resulta numa capacidade constante, porém a tensão terminal aumenta. Como pode ser observado na Figura 24.8, o valor de tensão dobrou a capacidade manteve-se constante.

26

Figura 21.10 – Ligação de baterias em série

Problema 22.2 (Resolução XI)

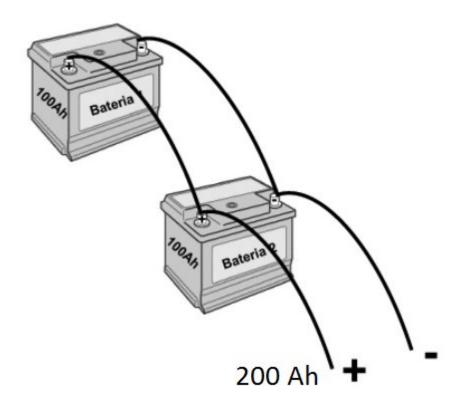


Figura 21.11 – Ligação de baterias em paralelo

A ligação de baterias em paralelo resulta no aumento da capacidade do sistema, porém a tensão terminal continua a mesma. Como pode ser observado na Figura 24.9, o valor de tensão não muda, supondo que a capacidade de uma bateria seja 100Ah, o sistema total teria uma capacidade de 200Ah.

ĂĂ

Problema 22.2 (Resolução XII)

Capacidade da bateria de acumuladores

A quantidade de carga eléctrica fornecida (expressa em Ah) da bateria, W(Ah) seria calculada através da seguinte expressão:

$$W_{(Ah)} = \frac{Energia\ diária\ de\ consumo}{Tensão\ da\ bateria} = \frac{W_D\left(Wh\right)}{U}W_{(Ah)} = \frac{2060}{2\times24} = 42,92\ Ah$$

Contudo, em situações reais a eficiência da bateria nunca atinge 100% (por exemplo, para baterias de chumbo – ácido, os valores correntes são de 80%, e a profundidade de descarga máxima de segurança (para não se danificar a bateria) é normalmente de 60%.

Problema 22.2 (Resolução XIII)

Capacidade real da bateria de acumuladores

O cálculo da capacidade de uma bateria real, CB(Ah) é efectuado através da seguinte equação:

$$C_{(Ah)} = W_{(Ah)} \frac{N_d}{K_{Bat} \times K_D} \Leftrightarrow C_{(Ah)} = \frac{W_D(Ah) \times N_d}{U \times K_{Bat} \times K_D}$$

$$C_{(Ah)} = \frac{2060 \times 3}{48 \times 0.80 \times 0.65} = 268,23 [Ah]$$

Atendendo ao facto de cada bateria ter a capacidade de 220 Ah então serão precisos 2 conjuntos de baterias

Problema 22.2 (Resolução XIV)

Selecção do regulador de carga MPP

A selecção do regulador de carga MPP é prevista para cumprir o seu valor de corrente máxima DC, $I_{max\ DC}$. Por isso deverá ser limitada pela corrente total, IT à saída do gerador fotovoltaico:

$$I_{maxDC} > I_T \Leftrightarrow I_{maxDC} > (N_F \times I_{max})$$
$$I_{maxDC} > (7 \times 17,07) = 119,5 A$$

Problema 22.2 (Resolução XV)

Selecção do inversor

A potência mínima requerida para o inversor, P_{inv} é calculada de acordo com a seguinte equação:

$$P_{inv} > \sum P_i$$

 $P_{inv} > (60 + 300 + 200 + 1300 + 200) = 2060 [W]$

