

Optimização

Aula 26

Programação Não Linear

Aula 26: Programação Não-Linear - Funções de Uma única variável (Prática)

- Método da Bissecção;
- Método de Newton.

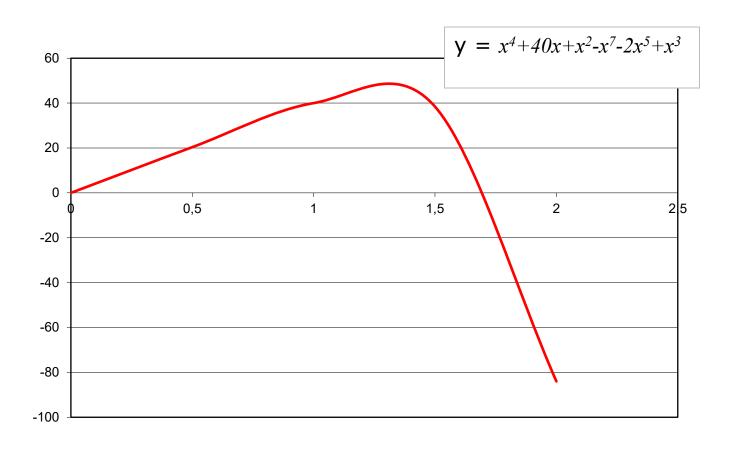
Problema 26.1

Considere o seguinte problema

Maximizar $f(x) = x^4 + 40x + x^2 - x^7 - 2x^5 + x^3$

- Aplique o método de Bissecção para resolver aproximadamente a) esse problema. Use uma tolerância de erro ε=0,02 e limites iniciais [0 e 5]
- b) Aplique o método de Newton, com $\varepsilon = 0,0001$ e $x_1 = 5$ a este problema

Problema 26.1 (Resolução I)



Problema 26.1 (Resolução II) **Método da Bissecção**

As duas primeiras derivadas são dadas por:

$$\frac{df(x)}{dx} = 4x^3 + 40 + 2x - 7x^6 - 10x^4 + 3x^2$$
$$\frac{df^2(x)}{dx} = 12x^2 + 2 - 42x^5 - 40x^3 + 6x$$

Pelo facto da segunda derivada ser não positiva em qualquer ponto, f(x) é uma função côncava e portanto o método da bissecção pode ser aplicado tranquilamente para encontrar o seu máximo global (supondo-se que exista um máximo global).

Problema 26.1 (Resolução III) **Método da Bissecção**

Iteração	f '(x)	<u>x</u>	\overline{x}	novo x	f(x)	
0		0	5	2,5	-644,727	continuar
1	-1973,36	0	2,5	1,25	45,08514	continuar
2	3,883057	1,25	2,5	1,875	-30,3536	continuar
3	-347,095	1,25	1,875	1,5625	33,35275	continuar
4	-95,76	1,25	1,5625	1,40625	43,04517	continuar
5	-33,3722	1,25	1,40625	1,328125	44,78928	continuar
6	-12,2129	1,25	1,328125	1,289063	45,0942	continuar
7	-3,59817	1,25	1,289063	1,269531	45,12619	parar

Problema 26.1 (Resolução IV) Método de Newton

As duas primeiras derivadas são dadas por:

$$\frac{df(x)}{dx} = 4x^3 + 40 + 2x - 7x^6 - 10x^4 + 3x^2$$
$$\frac{df^2(x)}{dx} = 12x^2 + 2 - 42x^5 - 40x^3 + 6x$$

Portanto, a fórmula para calcular a nova solução experimental (x_{i+1}) a partir da actual x_i é:

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)} = x_i - \frac{4x^3 + 40 + 2x - 7x^6 - 10x^4 + 3x^2}{12x^2 + 2 - 42x^5 - 40x^3 + 6x}$$

Problema 26.1 (Resolução V) **Método de Newton**

Após seleccionar-se ε =0,001, e escolher-se x_i =5 como solução experimental inicial pode-se ver na tabela seguinte as soluções restantes:

Iteração	x_i	f(x)	f'(x)	f''(x)	x_i+1	$(x_i+1-x_i)<=\varepsilon$
1	5	-83400	-115000	-135918	4,153902	continuar
2	4,153902	-23260,6	-38551,8	-54576,4	3,447519	continuar
3	3,447519	-6430,23	-12918,9	-21927,9	2,858366	continuar
4	2,858366	-1727,92	-4321,62	-8830,75	2,368983	continuar
5	2,368983	-422,793	-1437,49	-3581,95	1,96767	continuar
6	1,96767	-68,0044	-470,145	-1483,29	1,650708	continuar
7	1,650708	22,76782	-146,398	-650,07	1,425504	continuar
8	1,425504	42,34429	-39,4953	-328,155	1,305149	continuar
9	1,305149	45,00921	-7,00132	-217,712	1,27299	continuar
10	1,27299	45,12599	-0,38973	-193,834	1,270979	continuar
11	1,270979	45,12639	-0,00143	-192,411	1,270972	parar

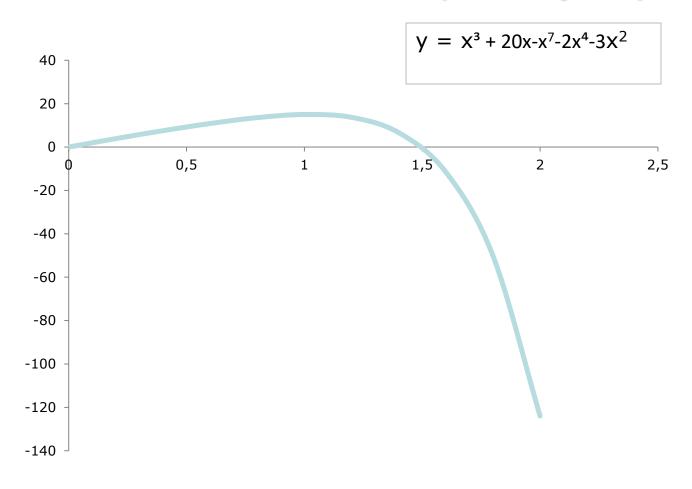
Problema 26.2

Considere o seguinte problema

Maximizar $f(x) = x^3 + 20x - x^7 - 2x^4 - 3x^2$

- Aplique o método de Bissecção para resolver aproximadamente a) esse problema. Use uma tolerância de erro ε=0,007e encontre limites iniciais [0 e 2]
- Aplique o método de Newton, com $\varepsilon = 0.001$ e $x_1 = 1$ a este problema

Problema 26.2 (Resolução I)



Problema 26.2 (ResoluçãoII) **Método da Bissecção**

As duas primeiras derivadas são dadas por:

$$\frac{df(x)}{dx} = 3x^2 + 20 - 7x^6 - 8x^3 - 6x$$
$$\frac{df^2(x)}{dx} = 6x - 42x^5 - 24x^2 - 6$$

Pelo facto da segunda derivada ser não positiva em qualquer ponto, f(x) é uma função côncava e portanto o método da bissecção pode ser aplicado tranquilamente para encontrar o seu máximo global (supondo-se que exista um máximo global).

Problema 26.2 (Resolução III) **Método da Bissecção**

Iteração	df/dx	<u>X</u>	\overline{x}	Novo x	f(x)
0		0	2	1	15
1	2	1	2	1,5	-0.58594
2	-88,9844	1	1,5	1,25	12.61444
3	-25,1404	1	1,25	1,125	14.64264
4	-8,53476	1	1,125	1,0625	14.98525
5	-2,65496	1	1,0625	1,03125	15.02896
6	-0,19016	1	1,03125	1,015625	15.02303
7	0,937417	1,015625	1,03125	1,023438	15.0282
8	0,381974	1,023438	1,03125	1,027344	15.02913

Problema 26.2 (Resolução IV) Método de Newton

As duas primeiras derivadas são dadas por:

$$\frac{df(x)}{dx} = 3x^2 + 20 - 7x6 - 8x^3 - 6x$$
$$\frac{df^2(x)}{dx} = 6x - 42x^5 - 24x^2 - 6$$

Portanto, a fórmula para calcular a nova solução experimental (x_{i+1}) a partir da actual x_i é:

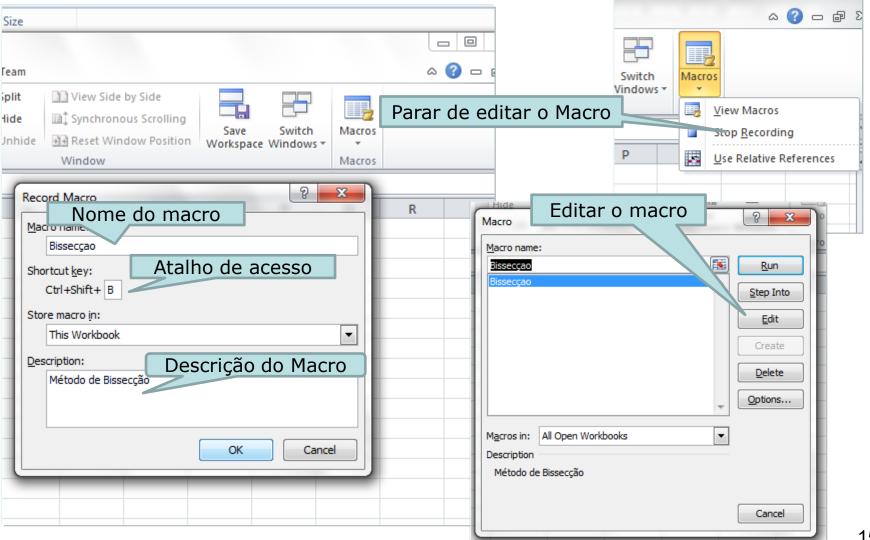
$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)} = x_i - \frac{3x^2 + 20 - 7x^6 - 8x^3 - 6x}{6x - 42x^5 - 24x^2 - 6}$$

Problema 26.2 (Resolução V) **Método de Newton**

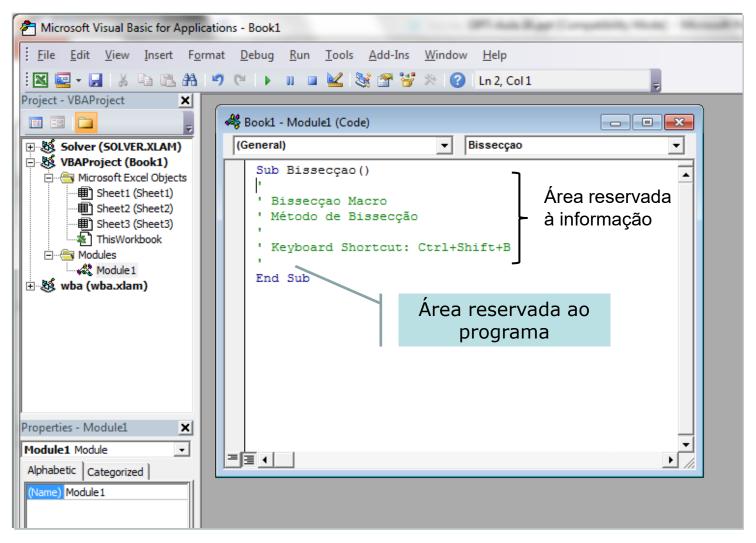
Após seleccionar-se ε =0,001, e escolher-se x_i =1 como solução experimental inicial, pode-se ver na tabela seguinte as soluções restantes:

Iteração i	x_i	$f(x_i)$	$f'(x_i)$	f " (x_i)	x_{i+1}
1	1	15	2	-66	1,030303
2	1,030303	15,0291	-0,11991	-74,0559	1,028684
3	1,028684	15,0292	-0,00037	-73,6037	1,028679
Parar					

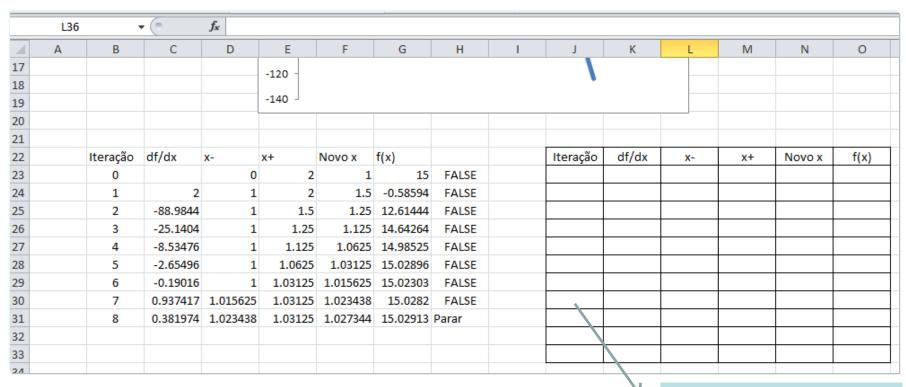
Macro do Excel (I)



Macro do Excel (II)



Macro do Excel (III)



Planilha onde se vai escrever os resultados do programa

Macro do Excel - Programa (IV)

```
Sub Bisseccao()
' Bisseccao Macro
' Método de Bissecção
'Keyboard Shortcut: Ctrl+Shift+B
Dim I, Xesq, Xdir, Xnovo, dFx, Fx
I = 0
KI = 23
K = 23
Xesq = 0
Xdir = 2
```


Macro do Excel - Programa (V)

```
Control Do

K = 23 + I

Range("J" & K).Value = I

Range("L" & K).Value = Xesq

Range("M" & K).Value = Xdir

Xnovo = (Xdir + Xesq) / 2

Range("N" & K).Value = Xnovo
```

```
Fx = Xnovo ^ 3 + 20 * Xnovo - Xnovo ^ 7 - 2 * Xnovo ^ 4 - 3 * Xnovo ^ 2
Range("O" & K).Value = Fx
Range("P" & K).Value = "Continuar"
```


Macro do Excel - Programa (VI)

```
| = | + 1
K| = K| + 1
```

dFx = 3 * Xnovo ^ 2 + 20 - 7 * Xnovo ^ 6 - 8 * Xnovo ^ 3 - 6 * Xnovo Range("K" & KI).Value = dFx

If dFx < 0 Then Xesq = Xesq Else Xesq = Xnovo
If dFx > 0 Then Xdir = Xdir Else Xdir = Xnovo
Loop Until (Abs((Xesq - Xdir) / 2) <= 0.0007)

Range("P" & K). Value = "Parar" Range("K" & KI). Value = ""

End Sub

Macro do Excel (VI)

Iteração	df/dx	X-	χ+	Novo x	f(x)	Comentário
0		0	2	1	15	Continuar
1	2	1	2	1,5	-0,58594	Continuar
2	-88,9844	1	1,5	1,25	12,61444	Continuar
3	-25,1404	1	1,25	1,125	14,64264	Continuar
4	-8,53476	1	1,125	1,0625	14,98525	Continuar
5	-2,65496	1	1,0625	1,03125	15,02896	Continuar
6	-0,19016	1	1,03125	1,015625	15,02303	Continuar
7	0,937417	1,015625	1,03125	1,023438	15,0282	Continuar
8	0,381974	1,023438	1,03125	1,027344	15,02913	Continuar
9	0,09802	1,027344	1,03125	1,029297	15,02919	Continuar
10	-0,04554	1,027344	1,029297	1,02832	15,0292	Parar

Resultados do programa